Research on the Influence of Horizontal Thermal Advection on Surface Energy Balance in Zoige Alpine Wetland

  • Xuancheng LU ,
  • Jun WEN ,
  • Yue YANG ,
  • Hui TIAN ,
  • Wenhui LIU ,
  • Yueyue WU ,
  • Yuqin JIANG
Expand
  • 1. College of Atmospheric Sciences,Chengdu University of Information Technology / Sichuan Key Laboratory of Plateau Atmosphere and Environment,Chengdu 610225,Sichuan,China
    2. Northwest Institute of Ecological Environment and Resources,Chinese Academy of Sciences / Key Laboratory of Land Surface Process and Climate Change in the Cold and Arid Region of the Chinese Academy of Sciences,Lanzhou 730000,Gansu,China

Received date: 2020-05-21

  Revised date: 2020-07-10

  Online published: 2022-03-17

Abstract

The near-surface energy budget closure has always been a scientific hot topic in the land-surface processes research, especially over the underlying surface of heterogeneous wetlands.In this investigation, the horizontal thermal advection caused by thermal inhomogeneity of the underlying surface over the wetland is calculated based on the data of the Flower-lake observation field in the Zoige alpine wetland.With considering the horizontal thermal advection, its contribution to the near-surface energy closure is analyzed.The results show that the mean horizontal thermal advection of the Zoige wetland is 22.9 W·m-2, and the maximum value can reach 58.7 W·m-2 in the daytime of summer 2017.After introducing the horizontal thermal advection and soil heat storage into the near-surface energy balance equation, the near-surface energy closure ratio increased from 41.8% to 67.9% in summer.The contribution of horizontal thermal advection was 5.8%, that of soil thermal storage was 20.1%, and that of plant photosynthetic thermal storage was 1.0%.The diurnal variation of the near-surface horizontal thermal advective is equivalent to the sensible heat flux in Zoige wetland, and the maximum diurnal variation is about one third of the thermal storage of the wetland soil.

Cite this article

Xuancheng LU , Jun WEN , Yue YANG , Hui TIAN , Wenhui LIU , Yueyue WU , Yuqin JIANG . Research on the Influence of Horizontal Thermal Advection on Surface Energy Balance in Zoige Alpine Wetland[J]. Plateau Meteorology, 2022 , 41(1) : 122 -131 . DOI: 10.7522/j.issn.1000-0534.2020.00059

References

null
Anthoni P M Law B E Unsworth M H al et2000.Variation of net radiation over heterogeneous surfaces: measurements and simulation in a juniper-sagebrush ecosystem[J].Agricultural and Forest Meteorology102(4): 275-286.DOI: 10.1016/s0168-1923(00)00104-0.
null
Baldocchi D2008.Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems [J].Australian Journal of Botany56(1): 1-26.DOI: 10.1071/bt07151.
null
Finnigan J J Clement R Malhi Y al et2003.A reevaluation of long term flux measurement techniques Part I: Averaging and coordinate rotation[J].Boundary Layer Meteorology107(1): 1-48.DOI: 10.1023/a: 1021554900225.
null
Guo Y Schuepp P H1994.On surface energy balance over the northern wetlands: 1.The effects of small.scale temperature and wetness heterogeneity[J].Journal of Geophysical Research99(D1): 1601-1612.DOI: 10.1029/93jd01017.
null
Harder P Pomeroy J W Helgason W2017.Local-scale advection of sensible and latent heat during snowmelt[J].Geophysical Research Letters44(19): 9769-9777.DOI: 10.1002/2017gl074394.
null
Irmak S Payero J O Kilic A al et2014.On the magnitude and dynamics of eddy covariance system residual energy (energy balance closure error) in subsurface drip-irrigated maize field during growing and non-growing (dormant) seasons[J].Irrigation Science32(6): 471-483.DOI: 10.1007/s00271-014-0443-3.
null
Kochendorfer J Paw U K T2011.Field estimates of scalar advection across a canopy edge[J].Agricultural and Forest Meteorology151(5): 585-594.DOI: 10.1016/j.agrformet.2011.01.003.
null
Leuning R Gorsel V E Massman W J al et2012.Reflections on the surface energy imbalance problem[J].Agricultural and Forest Meteorology, 156: 65-74.DOI: 10.1016/j.agrformet.2011. 12.002.
null
Liebethal C Huwe B Foken T2005.Sensitivity analysis for two ground heat flux calculation approaches[J].Agricultural and Forest Meteorology132(3/4): 253-262.DOI: 10.1016/j.agrformet. 005.08.001.
null
Meyers T P Hollinger S E2004.An assessment of storage terms in the surface energy balance of maize and soybean[J].Agricultural and Forest Meteorology125(1-2): 105-115.DOI: 10.1016/j.agrformet.2004.03.001.
null
Oncley S P Foken T Vogt R al et2007.The energy balance experiment EBEX-2000.Part I: Overview and energy balance[J].Boundary Layer Meteorology123(1): 1-28.DOI: 10.1007/s10546-007-9161-1.
null
Paw U K T Baldocchi D D Meyers T P al et2000.Correction of eddy-covariance measurements incorporating both advective effects and density fluxes[J].Boundary Layer Meteorology97(3): 487-511.DOI: 10.1023/A: 1002786702909.
null
Stull R B1988.An Introduction to Boundary Layer Meteorology[M].Kluwer Academic Publisher224(1): 660.DOI: 10.1007/978-94-009-3027-8.
null
Stannard D I Blanford J H Kustas W P al et1994.Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon ’90 experiment[J].Water Resources Research30(5): 1227-1239.DOI: 10.1029/93wr03037.
null
Wang R Y Zhang Q Zhao H al et2012.Analysis of the surface energy closure for a site in the gobi desert in Northwest China[J].Acta Meteorologica Sinica26(2): 250-259.DOI: 10.1007/s13351-012-0210-4.
null
Yang R Friedl M A2003.Modeling the effects of three-dimensional vegetation structure on surface radiation and energy balance in boreal forests[J].Journal of Geophysical Research108(D16): 1-11.DOI: 10.1029/2002jd003109.
null
曹生奎, 曹广超, 陈克龙, 等, 2016.青海湖高寒湿地生态系统CO2通量和水汽通量间的耦合关系[J].中国沙漠36(5): 1286-1294.DOI: 10.7552/j.issn.1000-694X.2016.00029.
null
郭斌, 王珊, 张菡, 等, 2018.若尔盖湿地天然牧草生育期变化特征及其对气候变化的响应[J].高原山地气象研究38(2): 49-57.DOI: 10.3969/j.issn.1674-2184.2018.02.008.
null
胡隐樵, 高由禧, 王介民, 等, 1994.黑河实验(HEIFE)的一些研究成果[J].高原气象13(3): 2-13.
null
李宏宇, 张强, 赵建华, 等, 2010.陇中黄土高原地表能量不平衡特征及其影响机制研究[J].高原气象29(5): 1153-1162.
null
李宏宇, 张强, 赵建华, 2012a.论地表能量不平衡的原因及其解决办法[J].干旱区研究29(2): 222-232.
null
李宏宇, 张强, 王春玲, 等, 2012b.空气热储存、 光合作用和土壤垂直水分运动对黄土高原地表能量平衡的影响[J].物理学报61(15): 537-547.
null
李雪洮, 梁捷宁, 郭琪, 等, 2020.利用大涡模式模拟黄土高原地区对流边界层特征[J].高原气象39(3): 523-531.DOI: 10. 7522/j.issn.1000-0534.2019.0050.
null
陆宣承, 文军, 田辉, 等, 2020.若尔盖高寒湿地-大气间水热交换湍流通量的日变化特征分析[J].高原气象39(4): 719-728.DOI: 10.7522/j.issn.1000-0534.2019.00073.
null
宋春林, 孙向阳, 王根绪, 2015.森林生态系统碳水关系及其影响因子研究进展[J].应用生态学报26(9): 2891-2902.DOI: 10.13287/j.1001-9332.20150630.020.
null
王介民, 王维真, 刘绍民, 等, 2009.近地层能量平衡闭合问题——综述及个例分析[J].地球科学进展24(7): 705-713.
null
张强, 胡隐樵, 1995.热平流影响下湿润地表的通量-廓线关系[J].大气科学19(1): 8-20.
null
张强, 李宏宇, 赵建华, 2012.垂直平流输送和土壤热储存补偿对黄土高原地表能量平衡的修正[J].中国科学(地球科学)42(1): 42-51.DOI: 10.1007/s11430-011-4220-3.
null
周彦昭, 李新, 2018.涡动相关能量闭合问题的研究进展[J].地球科学进展33(9): 898-913.DOI: 10.11867./j.issn.1001-8166.2018.09.0898.
Outlines

/