The Characteristics of Land‐Atmospheric Water and Heat Exchange during Soil Freezing‐Thawing Process over the Underlying Surface of the Alpine Grassland in the Source Region of the Yellow River

  • Yueyue WU ,
  • Jun WEN ,
  • Zuoliang WANG ,
  • Dongyu JIA ,
  • Wenhui LIU ,
  • Yuqin JIANG ,
  • Xuancheng LU
Expand
  • 1. Key Laboratory of Plateau Atmosphere and Environment,Sichuan Province,College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Northwest Institute of Ecological Environment and Resources,Chinese Academy of Sciences,Key Laboratory of Land Surface Process and Climate Change in the Cold and Arid Region of the Chinese Academy of Sciences Room,Lanzhou 730000,Gansu,China
    3. College of Geography and Environmental Engineering,Lanzhou City University,Lanzhou 730070,Gansu,China

Received date: 2020-10-26

  Revised date: 2021-03-01

  Online published: 2022-03-17

Abstract

The seasonal characteristics of water and heat exchange in the alpine grasslands are significant, and the freezing‐thawing process has an important impact on the land‐atmospheric water and heat exchange.Based on the observation data of the land surface process in the Tangchama small watershed in the source area of the Yellow River from May 2014 to May 2015, this research divides the soil freezing‐thawing process into thawed stage (TT), frozen stage (FF), thawing to freezing (T-F) and freezing to thawing (F-T), and the changes in the different states and period of the net radiation, sensible heat flux, latent heat flux and surface heat flux of the underlying surface of the alpine grassland are analyzed to explore the characteristics of water and heat exchange between the land‐atmosphere in the soil freezing‐thawing process.The results are as follows: (1) The average value of the net radiation flux in the thawed stage is generally greater than that of the other three stages, and the maximum value reaches 203.7 W·m-2.The frozen soil melts in the freezing‐thawing stage, and the soil moisture content gradually increases.The radiation ratio increased significantly during the frozen stage, the net radiation diurnal variation was the largest in the thawed stage, reaching 717.6 W·m-2, and the frozen stage was the smallest, followed by the freezing‐thawing stage.(2) The proportion of sensible heat flux and latent heat flux is different in the thawed and frozen stages.When completely thawed, due to precipitation and soil moisture content, the net radiation is mainly converted into latent heat flux.The maximum diurnal variation of latent heat flux is 193.7 W·m-2, while the sensible heat flux is only about 80.0 W·m-2.The diurnal average of sensible heat and latent heat in the thawing‐freezing phase, the freezing‐thawing period and the frozen period is not much different.The mean latent heat in the three period is 21.9 W·m-2, and the sensible heat is 20.3 W·m-2; The diurnal variation is greater than the latent heat in the three period, the soil suffers a freezing‐thawing cycle, the soil temperature difference is small, and the water content changes, and the net radiation is mainly converted into sensible heat during this period; the diurnal variation of sensible heat was greater than that of latent heat in the three stages.The freezing-thawing cycle occurred in the soil, the difference between ground and air temperature was small, and the moisture content changed.During this period, the net radiation was mainly converted to sensible heat.(3) The soil heat flux is positive (negative) in thawed (frozen) state, indicating that the surface soil absorbs (releases) heat from the atmosphere, and its daily variation range is large (small).The above results show that the state and process of soil freezing and thawing have different characteristics for the water and heat exchange process between the land and atmosphere.

Cite this article

Yueyue WU , Jun WEN , Zuoliang WANG , Dongyu JIA , Wenhui LIU , Yuqin JIANG , Xuancheng LU . The Characteristics of Land‐Atmospheric Water and Heat Exchange during Soil Freezing‐Thawing Process over the Underlying Surface of the Alpine Grassland in the Source Region of the Yellow River[J]. Plateau Meteorology, 2022 , 41(1) : 132 -142 . DOI: 10.7522/j.issn.1000-0534.2021.00014

References

null
Guo D L Yang M X Wang H J2011a.Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau[J].Hydrological Processes25(16): 2531-2541.DOI: 10.1002/hyp.8025.
null
Guo D L Yang M X Wang H J2011b.Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau[J].Environmental Earth Sciences63(1): 97-107.DOI: 10.1007/s12665-010-0672-6.
null
Ma Y Fan S Ishikawa H al et2005.Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area[J].Theoretical and Applied Climatology80(2-4): 259-273.DOI: 10.1007/s00704-004-0104-1.
null
Meyers T P Hollinger S E2004.An assessment of storage terms in the surface energy balance of maize and soybean[J].Agricultural and Forest Meteorology125(1): 105-115.DOI: 10.1016/j.agrformet.2004.03.001.
null
Osterkamp T E1987.Freezing and thawing of soils and permafrost containing unfrozen water or brine[J].Water Resources Research23(12): 2279-2285.DOI: 10.1029/WR023i012p02279.
null
Stannard D I Blanford J H Kustas W P al et1994.Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon '90 experiment[J].Water Resources Research30(5): 1227-1239.DOI: 10.1029/93WR03037.
null
Tanaka K Ishikawa H Hayashi T al et2001.Surface Energy Budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 Data[J].Journal of the Meteorological Society of Japan79(2): 505-517.
null
Tanaka K Tamagawa I Ishikawa H al et2003.Surface energy budget and closure of the eastern Tibetan Plateau during the GAME-Tibet IOP 1998[J].Journal of Hydrology283(1): 169-183.DOI: 10.1016/S0022-1694(03)00243-9.
null
Yao J M Zhao L Gu L L al et2011.The surface energy budget in the permafrost region of the Tibetan Plateau[J].Atmospheric Research102(4): 394-407.
null
陈渤黎, 2014.青藏高原土壤冻融过程陆面能水特征及区域气候效应研究[D].兰州: 中国科学院寒区旱区环境与工程研究所.
null
陈琼, 周强, 张海峰, 等, 2010.三江源地区基于植被生长季的NDVI对气候因子响应的差异性研究[J].生态环境学报19(6): 1284-1289.DOI: 10.3969/j.issn.1674-5906.2010.06.004.
null
董希成, 谢昌卫, 赵林, 等, 2013.兰州马衔山多年冻土区地表能量平衡特征分析[J].冰川冻土35(2): 320-326.
null
葛骏, 余晔, 李振朝, 等, 2016.青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J].高原气象35(3): 608-620.DOI: 10.7522/j.issn.1000-0534.2016.00032.
null
洪涛, 梁四海, 孙禹, 等, 2013.黄河源区多年冻土热传导系数影响因素分析及其在活动层厚度模拟中的应用[J].冰川冻土35(4): 824-833.DOI: 10.7522/j.issn.1000-0240.2013.0093.
null
李光伟, 文军, 王欣, 等, 2019.麻多高寒湿地冻结过程中土壤热通量变化特征分析[J].大气科学43(4): 719-729.DOI: 10. 3878/j.issn.1006-9895.1810.17181.
null
李述训, 南卓铜, 赵林, 2002.冻融作用对系统与环境间能量交换的影响[J].冰川冻土24(2): 109-115.DOI: 10.3969/j.issn. 1000-0240.2002.02.001.
null
李文静, 罗斯琼, 郝晓华, 等, 2021.青藏高原东部不同季节积雪过程对地表能量和土壤水热影响的观测研究[J].高原气象40(3): 455-471.DOI: 10.7522/j.issn.1000-0534.2020.00001.
null
李照国, 吕世华, 奥银焕, 等, 2012.鄂陵湖湖滨地区夏季近地层微气象特征与碳通量变化分析[J].地理科学进展31(5): 602-608.DOI: 10.11820/dlkxjz.2012.05.008.
null
陆宣承, 文军, 田辉, 等, 2020.若尔盖高寒湿地-大气间水热交换湍流通量的日变化特征分析[J].高原气象39(4): 719-728.DOI: 10.7522/j.issn.1000-0534.2019.00073.
null
罗栋梁, 金会军, 吕兰芝, 等, 2014.黄河源区多年冻土活动层和季节冻土冻融过程时空特征[J].科学通报59(14): 1327-1336.DOI: 10.1360/csb2014-59-14-1327.
null
吕钊, 李茂善, 刘啸然, 等, 2020.青藏高原东缘峨眉山地区冬季地表能量交换特征研究[J].高原气象39(3): 445-458.DOI: 10.7522/j.issn.1000-0534.2019.00087.
null
马伟强, 马耀明, 李茂善, 等, 2005.藏北高原地区地表辐射出支和能量平衡的季节变化[J].冰川冻土27(5): 673-679.
null
齐木荣, 马千惠, 杨清华, 等, 2020.青藏高原冻结期地表热储分析——以鄂陵湖畔草地为例[J].高原气象39(6): 1270-1281.DOI: 10.7522/j.issn.1000-0534.2019.00134.
null
任雪塬, 张强, 岳平, 等, 2021.中国北方四类典型下垫面能量分配特征及其环境影响因子研究[J].高原气象40(1): 109-122.DOI: 10.7522/j.issn.1000-0534.2020.00008
null
尚伦宇, 吕世华, 张宇, 等, 2011.青藏高原东部土壤冻融过程中近地层湍流统计特征分析[J].高原气象30(1): 30-37.
null
唐恬, 王磊, 文小航, 2013.黄河源鄂陵湖地区辐射收支和地表能量平衡特征研究[J].冰川冻土35(6): 1462-1473.DOI: 10. 7522/j.issn.1000-0240.2013.0162.
null
田志伟, 王维真, 王介民, 2016.植被大气间能量储存分项对能量闭合率的影响分析[J].冰川冻土38(3): 794-803.
null
王澄海, 董文杰, 韦志刚, 2003.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报46(3): 309-316.DOI: 10.3321/j.issn: 0001-5733.2003.03.005.
null
王少影, 张宇, 吕世华, 等, 2012.玛曲高寒草甸地表辐射与能量收支的季节变化[J].高原气象31(3): 605-614.
null
王学佳, 杨梅学, 万国宁, 2012.藏北高原D105点土壤冻融状况与温湿特征分析[J].冰川冻土34(1): 56-63.
null
文军, 蓝永超, 苏中波, 等, 2011.黄河源区陆面过程观测和模拟研究进展[J].地球科学进展26(6): 575-585.
null
吴喜芳, 李改欣, 潘学鹏, 等, 2015.黄河源区植被覆盖度对气温和降水的响应研究[J].资源科学37(3): 512-521.
null
徐自为, 刘绍民, 徐同仁, 等, 2013.不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J].地球科学进展28(8): 875-889.DOI: 10.11867/j.issn.1001-8166.2013.08.0875.
null
杨成, 吴通华, 姚济敏, 等, 2020.青藏高原表层土壤热通量的时空分布特征[J].高原气象39(4): 706-718.DOI: 10.7522/j.issn.1000-0534.2020.00022.
null
杨梅学, 姚檀栋, Hirose N, 等, 2006.青藏高原表层土壤的日冻融循环[J].科学通报51(16): 1974-1976.DOI: 10.3321/j.issn: 0023-074X.2006.16.020.
Outlines

/