Characteristics Analysis of the Land-atmospheric Water & Heat Exchanges over the Yarlung Zangbo Grand Canyon Region

  • Qiang ZHANG ,
  • Jun WEN ,
  • Yueyue WU ,
  • Yaling CHEN ,
  • Yueqi LI ,
  • Zheng LIU
Expand
  • College of Atmospheric Sciences,Chengdu University of Information Technology/ Sichuan Key Laboratory of Plateau Atmosphere and Environment,Chengdu 610225,Sichuan,China

Received date: 2021-08-15

  Revised date: 2021-12-14

  Online published: 2022-03-17

Abstract

By using the ECMWF Re-Analyses version5 data, the water vapor transport type over the Yarlung Zangbo Grand Canyon area of southeastern Qinghai-Xizang Plateau(QXP)are categorized, the daily variation characteristics of land-atmospheric water heat exchange fluxes are analyzed at different locations under different water vapor conditions by choosing two observation stations in the Yarlung Zangbo Grand Canyon area, namely, the Pailong Station and the Motuo Station.The results show that: The plateau monsoon period is the period of strong water vapor transport and the warm-wet period in the Yarlung Zangbo Grand Canyon area, while the opposite is true for the Plateau non-Monsoon period.Daily variations of near-surface latent heat fluxes on typical sunny/cloudy days during the Plateau Monsoon/non-Monsoon period are more sensitive and consistent in response to atmospheric water vapor conditions at the Motuo and the Pailong stations.The daily variation of near-surface latent heat flux under strong water vapor conditions is stronger than that under weak water vapor conditions, and the most significant difference in daily variation of near-surface latent heat flux under different water vapor conditions is found at the low altitude and humid Motuo station, where the daily average of near-surface sensible heat flux under strong water vapor conditions (84.05 W·m-2) is about 1.13 times of that under weak water vapor conditions on a typical sunny day during the non-monsoon period on the plateau, and the daily variation can reach 345.37 W·m-2.Different characteristics of near-surface sensible heat fluxes at the two sites in response to different water vapor conditions during the highland monsoon and non-monsoon periods.The daily variation of near-surface sensible heat fluxes at the Pailong and the Motuo stations on typical clear days during the highland monsoon period is stronger under weak water vapor conditions than under strong water vapor conditions.The daily average and variation of near-surface sensible heat flux is most sensitive to the difference of water vapor conditions during the highland monsoon/non-monsoon period at the higher altitude Pailong station, and the daily average and diurnal range of sensible heat flux under weak water vapor conditions (32.71 and 191.1 W·m-2) is about 1.66 and 1.26 times higher than that under strong water vapor conditions under a typical sunny day during the highland monsoon period.The weakening effect of cloud cover and water vapor on solar short-wave radiation is greater than its own greenhouse effect.The daily variations of near-surface sensible heat fluxes at the Motuo and the Pailong stations under weak water vapor conditions on typical cloudy days during the highland monsoon/non-monsoon period are stronger than those under strong water vapor conditions, and the daily average values of near-surface sensible heat fluxes at the Pailong station under weak water vapor conditions on typical cloudy days during the Plateau Monsoon/non-Monsoon period are 35.12 and 14.32 W?m-2 which are 2.59 and 1.27 times higher than those under strong water vapor conditions, respectively.The existence of water vapor transport channels in the Yarlung Zangbo Grand Canyon area, the radiation forcing of atmospheric water vapor has significant effects on the land-atmospheric water & heat exchanges process, the energy parting at the surface is controlled by the land surface property.

Cite this article

Qiang ZHANG , Jun WEN , Yueyue WU , Yaling CHEN , Yueqi LI , Zheng LIU . Characteristics Analysis of the Land-atmospheric Water & Heat Exchanges over the Yarlung Zangbo Grand Canyon Region[J]. Plateau Meteorology, 2022 , 41(1) : 153 -166 . DOI: 10.7522/j.issn.1000-0534.2021.00113

References

null
Adler R F Huffman G J Chang A al et2003.The Version2 Global Precipitation Climatology Project(GPCP)monthly precipitation analysis(1979-present)[J].Journal of Hydrometeorology4(60): 1147-1167.DOI: 10.1175/1525-7541(2003)004<1147: TVGPCP>2.0.CO; 2.
null
Bolle H J Andre J C Arrue J L al et1993.EFEDA: European field experiment in a desertification-threatened area[J].Annales Geophysicae-European Geophysical Society11(2-3): 173-189.
null
Harris I Osborn T J Jones P al et2020.Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J].Scientific Data7(1): 1-18.DOI: 10.1038/s41597-020-0453-3.
null
Koch G W Scholes R J Steffen W L al et1995.The IGBP terrestrial transects: science plan[R].Sweden: Global Change Report.
null
Mauder M Foken T, 2015.Documentation and instruction manual of the Eddy-Covariance Software Package TK3[EB/OL].[2021-1- 13].
null
Monteith J L2010.An empirical method for estimating long-wave radiation exchanges in the British Isles[J].Quarterly Journal of the Royal Meteorological Society87(372): 171-179.DOI: 10. 1002/qj.49708737206.
null
Myhre G Shindell D Pongratz J al et2014.Anthropogenic and Natural Radiative Forcing Supplementary Information[J].Climate dynamics, (2014): 659-740.DOI: 10.1017/CBO9781107415324. 018.
null
Randall D A Wood R A Bony S al et2007.Climate models and their evaluation[M].Cambridge University Press, 589-662.
null
Sodergren A H McDonald A J Bodeker G E2018.An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification[J].Climate Dynamic51(5): 1639-1658.
null
Wen J Wang L Wei Z G2009.An overview of the LOess Plateau mesa region land surface process field EXperiment series (LOPEXs)[J].Hydrology and Earth System Sciences13(6): 945-951.
null
Yan H Huang J He Y al et2020. Atmospheric Water Vapor Budget and Its Long‐Term Trend Over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres125(23): e2020JD033297.DOI: 10.1029/2020JD033297.
null
陈萍, 李波, 2018.藏东南水汽输送特征分析及其影响[J].南方农业12(9): 124-125.
null
戴加洗, 1990.青藏高原气候[M].北京: 气象出版社.
null
伏薇, 李茂善, 阴蜀城, 等, 2022.西风南支与高原季风环流场下青藏高原大气边界层结构研究[J].高原气象41(1): 190-203.DOI:10.7522/j.issn.1000-0534.2021.00016.
null
高登义, 2008.雅鲁藏布江水汽通道考察研究[J].自然杂志30(5): 301-303.
null
高登义, 邹捍, 王维, 1985.雅鲁藏布江水汽通道对降水的影响[J].山地研究3(4): 239-249.
null
李宏毅, 肖子牛, 朱玉祥, 2018.藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征[J].高原气象37(4): 923-935.DOI: 10.7522/j.issn.1000-0534.2017.00097.
null
刘辉志, 冯健武, 王雷, 等, 2013.大气边界层物理研究进展[J].大气科学37(2): 467-476.DOI: 10.3878/j.issn.1006-9895. 2012.12315.
null
吕达仁, 陈佐忠, 王庚辰, 等, 1997.内蒙古半干旱草原土壤-植被-大气相互作用-科学问题与实验计划概述[J].气候与环境研究2(3): 199-209.DOI: 10.3878/j.issn.1006-9585.1997. 03.01.
null
陆宣承, 文军, 田辉, 等, 2020.若尔盖高寒湿地-大气间水热交换湍流通量的日变化特征分析[J].高原气象39(4): 719-728.DOI: 10.7522/j.issn.1000-0534.2019.00073.
null
马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象40(6): 1241-1262.DOI: 10. 7522/j.issn.1000-0534.2021.zk006.
null
齐冬梅, 李跃清, 白莹莹, 等.2009.高原夏季风指数的定义及其特征分析[J].高原山地气象研究29(4): 1-9.
null
汤懋苍, 梁娟, 邵明镜, 等.1984.高原季风年际变化的初步分析[J].高原气象3(3): 76-82.
null
王介民, 2012.涡动相关通量观测指导手册(Ver.20120212)[EB/OL].[2021-1-13].
null
王灵芝, 李茂善, 吕钊, 等, 2022.藏东南峡谷地区不同下垫面地表通量变化特征及其与降水的关系[J].高原气象41(1): 177-189.DOI: 10.7522/j.issn.1000-0534.2020.00107.
null
王少影, 张宇, 吕世华, 等, 2012.玛曲高寒草甸地表辐射与能量收支的季节变化[J].高原气象31(3): 605-614.
null
吴国雄, 孙淑芬, 陈文, 等, 2003青藏高原与西北干旱区对气候灾害的影响[M].北京: 气象出版社, 207.
null
徐祥德, 董李丽, 赵阳, 等, 2019.青藏高原“亚洲水塔”效应和大气水分循环特征[J].科学通报64(27): 2830-2841.
null
徐祥德, 陶诗言, 王继志, 等, 2002.青藏高原-季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J].气象学报60(3): 257-266, 385.
null
杨逸畴, 1999.雅鲁藏布大峡谷科学考察[J].科技导报17(7): 51-54.DOI: 10.3321/j.issn: 1000-7857.1999.07.014.
null
叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社, 62-73.
null
赵阳, 2019.青藏高原大地形影响背景下对流结构及水汽输送特征对下游暴雨的影响机理[D].北京: 中国气象科学研究院.
null
周娟, 文军, 王欣, 等, 2017.青藏高原季风演变及其与土壤湿度的相关分析[J].高原气象36(1): 45-56.DOI: 7522/j.issn.1000-0534.2016.00003.
null
周军, 1998.1994年8月亚洲季风区水汽的源汇分布和输送[J].热带气象学报14(1): 91-96.DOI: 10.1007/s00376-999-0032-1.
null
周天军, 高晶, 赵寅, 等, 2019.影响“亚洲水塔”的水汽输送过程[J], 中国科学院院刊34(11): 1210-1219.DOI: 10.16418/j.issn.1000-3045.2019.11.004.
null
曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象39(3): 467-476.DOI: 10.7522/j.issn.1000-0534.2019.00120.
Outlines

/