Analysis on the Temporal and Spatial Evolution Characteristics of Water Vapor Transport and Budget over the Source Region of the Three-River
Received date: 2021-02-25
Revised date: 2021-05-31
Online published: 2022-03-17
The Source Region of the Three-River (SRTR) lies in the hinterland of the Qinghai-Xizang (Tibetan) Plateau (QXP) and is one of the sensitive regions to climate change in East Asia.It is of great significance to study the distribution, transport, and budget of water vapor for understanding the characteristics of the regional precipitation.This research is based on the ERA5 reanalysis data of the European Centre for Medium-Range Weather Forecasts (ECMWF) from 1980 to 2019, combined with the data of 9 radiosonde stations in the National Meteorological Data Center from 1981 to 2010.The temporal and spatial variation characteristics of water vapor distribution, water vapor transport flux and budget of each boundary over the SRTR and its surrounding areas are analyzed.The results show that there are significant differences in the spatial distribution of water vapor content, which presents a high value region in the southeastern QXP and a low value region in the northwest of the QXP.The distribution and value of water vapor content are different in four seasons, which exhibit the largest in summer, followed by autumn and spring, and the least in winter.The annual cycle of water vapor content manifests the single peak over the SRTR and the Brahmaputra River basin.Water vapor is mainly concentrated in June to August and its maximum appears in July with a value of 41.6 mm.The inter-annual variation shows an increasing trend with a rate of 0.4 mm·(10a)-1.The Arabian Sea and the Bay of Bengal are the main sources of water vapor over the SRTR, followed by the western airflow from the middle latitude and the northwestern airflow.Three kinds of airflows form obvious convergence of water vapor transport flux over the Brahmaputra Grand Canyon.There are seasonal discrepancies in the intensity of water vapor transport.Among the water vapor import boundaries, the western boundary has the largest import (815.3×106 kg·s-1), followed by the southern boundary (724.9×106 kg·s-1) and the seasonal variations of the two boundaries are significant.The northern boundary has less import (317.9×106 kg·s-1), while the eastern boundary is the export boundary of water vapor flux, and the maximum water vapor export is in September with a value of 140.5×106 kg·s-1.The net water vapor import is greater than the export, thus the water vapor flux is in surplus, which is about to affect the variations of precipitation and the regional water cycle over the SRTR.
Yaling CHEN , Jun WEN , Rong LIU , Yuqin JIANG , Guoqiang REN , Yueqi LI , Qiang ZHANG , Zheng LIU . Analysis on the Temporal and Spatial Evolution Characteristics of Water Vapor Transport and Budget over the Source Region of the Three-River[J]. Plateau Meteorology, 2022 , 41(1) : 167 -176 . DOI: 10.7522/j.issn.1000-0534.2021.00049
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈斌, 徐祥德, 施晓晖, 2011.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区[J].气象学报, 69(5): 810-818.DIO: 10.11676/qxxb2011.071. |
null | |
null | 甘海洪, 2020.三江源区区域蒸散发的分布特征[D].北京: 中国地质大学, 1-65. |
null | 韩军彩, 周顺武, 吴萍, 等, 2012.青藏高原上空夏季水汽含量的时空分布特征[J].干旱区研究, 29(3): 457-463.DOI: 10. 13866/j.azr.2012.03.023. |
null | |
null | 李璠, 肖建设, 颜亮东, 2016.1964 -2014年青海省三江源地区日降水格局分析[J].干旱地区农业研究, 34(5): 282-288.DOI: 10.7606/j.issn.1000-7601.2016.05.43. |
null | |
null | 刘纪远, 徐新良, 邵全琴, 2008.近30年来青海三江源地区草地退化的时空特征[J].地理学报, 63(4): 364-376.DOI: 10.3969/j.issn.1009-637X.2008.03.001. |
null | 孟庆博, 刘艳丽, 鞠琴, 等, 2020.雅鲁藏布江流域近18年来植被变化及其对气候变化的响应[J/OL].南水北调与水利科技(中英文).[2021-02-23]. |
null | 孟宪红, 陈昊, 李照国, 等, 2020.三江源区气候变化及其环境影响研究综述[J].高原气象, 39(6): 1133-1143.DOI: 10.7522/j.issn.1000-0534.2019.00144. |
null | 王美月, 王磊, 李谢辉, 等, 2022.三江源地区暴雨的水汽输送源地及路径研究[J/OL].高原气象.[2021-02-23]. |
null | 谢欣汝, 游庆龙, 保云涛, 等, 2018.基于多源数据的青藏高原夏季降水与水汽输送的联系[J].高原气象, 37(1): 78-92.DOI: 10.7522/j.issn.1000-0534.2017.00030. |
null | 徐可飘, 2020.青藏高原大气水汽含量及水汽输送特征研究[D].安徽: 中国科学技术大学, 1-72. |
null | 徐祥德, 董李丽, 赵阳, 等, 2019.青藏高原“亚洲水塔”效应和大气水分循环特征[J].科学通报, 64(27): 2830-2841. |
null | 薛鹏飞, 余钟波, 谷黄河, 2020.雅鲁藏布江流域GPM和TRMM遥感降水产品精度评估[J].水电能源科学, 38(11): 13-16. |
null | 杨浩, 崔春光, 王晓芳, 等, 2019.气候变暖背景下雅鲁藏布江流域降水变化研究进展[J].暴雨灾害, 38(6): 565-575. |
null | |
null | 张文霞, 张丽霞, 周天军, 等, 2016.雅鲁藏布江流域夏季降水的年际变化及其原因[J].大气科学, 40(5): 965-980.DOI: 10. 3878/j.issn.1006-9895.1512.15205. |
null | 曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象, 39(3): 467-476.DOI: 10.7522/ j.issn.1000-0534.2019.00120. |
null | 周天军, 高晶, 赵寅, 等, 2019.影响“亚洲水塔”的水汽输送过程[J].中国科学院院刊, 34(11): 1210-1219. |
null | 朱丽, 刘蓉, 王欣, 等, 2019.基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J].高原气象, 38(3): 484-496.DOI: 10.7522/j.issn.1000-0534.2019.00015. |
/
〈 |
|
〉 |