Variation Characteristics of Surface Fluxes on Different Underlying Surfaces and Their Relationship with Precipitation in the Canyon Area of Southeast Tibet

  • Lingzhi WANG ,
  • Maoshan LI ,
  • Zhao Lü ,
  • Wei FU ,
  • Lei SHU ,
  • Shucheng YIN
Expand
  • School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province /Joint Laboratory of climate and Environmental Change,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China

Received date: 2020-07-30

  Revised date: 2020-12-12

  Online published: 2022-03-17

Abstract

In this study, variation characteristics of surface fluxes were analyzed by using the eddy covariance observations from four stations of Pailong, Danka, Kabu, and Motuo in the southeastern gorge area of Tibet from November 2018 to October 2019.Pailong Station is located at the entrance of the Canyon in Southeast Tibet, Danka Station is in the middle section, and Kabu Station and Metuo Station are located at the end of the Canyon in Southeast Tibet.Results show that monthly averaged daily latent heat flux is greater than sensible heat flux at night, and it has a single peak during the day.The sensible heat fluxes at Pailong and Danka stations are stronger from November to April and become weaker from May to October.The changing trend of monthly averaged daily sensible heat flux at Kabu station is fluctuating.Sensible heat flux and latent heat flux at Motuo station have the same variation characteristics, with a characteristic of a single peak change.Latent heat fluxes increase first and then decrease at all four stations.Seasonal variations of soil heat flux are obvious, characterizing positive values in spring and summer and negative values in autumn and winter.And the diurnal variation of soil heat flux in Pailong station was the strongest among all stations, and that of Kabu station was the weakest.The diurnal variation intensity of net radiation flux is summer>spring>autumn>winter.The downward and upward longwave radiation fluxes are the largest at Kabu Station and the smallest at Danka Station at the same time they are the largest in summer.The peak of diurnal longwave radiation flux appears later than the shortwave radiation flux.Energy closure rates of Danka, Pailong, Motuo, and Kabu stations are 70.86%, 68.91%, 69.29%, and 67.23%, respectively.In addition, in these four sites the degree of summer closure is high, while the degree of winter closure is low.Latent heat fluxes and soil heat fluxes increase, and sensible heat fluxes decrease as increasing precipitation at the four stations.The sensible heat flux and soil heat flux respond synchronously to precipitation changes, and the changes in latent heat have a significant lag in response to precipitation changes.

Cite this article

Lingzhi WANG , Maoshan LI , Zhao Lü , Wei FU , Lei SHU , Shucheng YIN . Variation Characteristics of Surface Fluxes on Different Underlying Surfaces and Their Relationship with Precipitation in the Canyon Area of Southeast Tibet[J]. Plateau Meteorology, 2022 , 41(1) : 177 -189 . DOI: 10.7522/j.issn.1000-0534.2020.00107

References

null
Foken T Wichura B1996.Tools for quality assessment of surface-based flux measurements[J].Agricultural and Forest Meteorology78(1/2): 83-105.
null
Hindman E E Upadhyay B P2002.Air pollution transport in the Himalayas of Nepal and Tibet during the 1995 -1996 dry season [J].Atmospheric Environment36(4): 727-739.
null
Jane Q2008.The third pole[J].Nature454(24): 393-396.
null
Li M S Su Z B Ma Y M al et2016.Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau[J].Sciences in Cold and Arid Regions8(2): 0103-0115.DOI: 10.3724/SP.J.1226.2016.00103.
null
Mauder M Foken T, 2015.Documentation and instruction manual of the Eddy-Covariance Software Package TK3 [EB/OL].[2021-1-13].
null
Twine T E Kustas W P Norman J M al et2000.Correcting eddy-covariance flux underestimates over a grassland[J].Agricultural and Forest Meteorology103(3): 0-300.
null
Wilson K Goldstein A Falge E al et2002.Energy balance closure at FLUXNET sites[J].Agricultural and Forest Meteorology113(1/4): 223-243.
null
Xin P Liu Y B Fan X W al et2017.Two energy balance closure approaches: applications and comparisons over an oasis-desert ecotone[J].Arid Zone Science, l009(1): 51-64.
null
Zhou L B Zou H Ma S P al et2015.The observed impacts of southasian summer monsoon on the local atmosphere and the near-surface turbulent heat exchange over the southeast tibet[J].Journal of Geophysical Research Atmospheres120(22): 11509-11518.
null
Zou H Zhou L B Ma S P al et2008.Local wind system in the Rongbuk Valley on the northern slope of Mt Everest[J].Geophysical Research Letters35(13): 344-349.
null
樊威伟, 马伟强, 郑艳, 等, 2018.青藏高原地面加热场年际变化特征及其与西风急流关系研究[J].高原气象37(3): 591-601.DOI: 10.7522/j.issn.1000-0534.2017.00062.
null
胡媛媛, 仲雷, 马耀明, 等, 2018.青藏高原典型下垫面地表能量通量的模型估算与验证[J].高原气象37(6): 1499-1510.DOI: 10.7522/j.issn.1000-0534.2018.00045.
null
季国良, 江灏, 查树芳, 1987.青藏高原地区有效辐射的计算及其分布特征[J].高原气象6(2): 141-149.
null
季国良, 江灏, 1995.青藏高原的长波辐射特征[J].高原气象14(4): 451-458.
null
解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象37(1): 28-42.DOI: 10. 7522/j.issn.1000-0534.2017.00019.
null
李宏毅, 肖子牛, 朱玉祥, 2018a.藏东南草地下垫面地气通量交换日变化的数值模拟[J].高原气象37(2): 443-454.DOI: 10.7522/j.issn.1000-0534.2017.00052.
null
李宏毅, 肖子牛, 朱玉祥, 2018b.藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征[J].高原气象37(4): 923-935.DOI: 10.7522/j.issn.1000-0534.2017.00097.
null
李家伦, 洪钟祥, 孙菽芬, 2000.青藏高原西部改则地区大气边界层特征[J].大气科学24(3): 301-312.
null
李娟, 李跃清, 蒋兴文, 等, 2016.青藏高原东南部复杂地形区不同天气状况下陆气能量交换特征分析[J].大气科学40(4): 777-791.
null
李茂善, 阴蜀城, 刘啸然, 等, 2019.近10年青藏高原及其周边湍流通量变化的数值模拟[J].高原气象38(6): 1140-1148.DOI: 10.7522/j.issn.1000-0534.2018.00145.
null
李泉, 张宪洲, 石培礼, 等, 2008.西藏高原高寒草甸能量平衡闭合研究[J].自然资源学报23(3): 391-399.
null
吕钊, 李茂善, 刘啸然, 等, 2020.青藏高原东缘峨眉山地区冬季地表能量交换特征研究[J].高原气象39(3): 445-458.DOI: 10.7522/j.issn.1000-0534.2019.00087.
null
马耀明, 姚檀栋, 王介民, 等, 2006a.青藏高原复杂地表能量通量研究[J].地球科学进展21(12): 1215-1223.
null
马耀明, 姚檀栋, 王介民, 2006b.青藏高原能量和水循环试验研究-GAME/Tibet与CAMP/Tibet研究进展[J].高原气象25(2): 344-351.
null
祁艳, 颜玉倩, 李金海, 等, 2019.青藏高原5 -10月地表潜热通量与青海同期降水之间的关系[J].干旱区研究36(3): 529-536.
null
王鸽, 韩琳, 唐信英, 等, 2014.藏东南地区复杂下垫面能量收支特征分析[J].高原山地气象研究34(4): 44-47.
null
王兰宁, 郑庆林, 宋青丽, 2003.青藏高原中西部下垫面对东亚大气环流季节转换影响的数值模拟[J].高原气象22(2): 179-184.
null
王介民, 邱华盛, 2000.中日合作亚洲季风实验—青藏高原实验(GAME—Tibet)[J].中国科学院院刊15(5): 386-388.
null
王介民, 2012.涡动相关通量观测指导手册(Ver.20120212)[EB/OL].[2021-1-13].
null
王介民, 王维真, 刘绍民, 等, 2009.近地层能量平衡闭合问题——综述及个例分析[J].地球科学进展24(7): 705-713.
null
王顺久, 唐信英, 王鸽, 等, 2018.藏东南地区复杂下垫面地气交换观测试验研究[J].干旱区资源与环境32(2): 149-154.
null
武建军, 左洪超, 王晓霞, 等, 2014.近地层能量闭合率异常的初步分析[J].兰州大学学报.自然科学版50(6): 838-846.
null
阳坤, 王介民, 2008.一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J].中国科学: 地球科学38(2): 243-250.
null
杨成, 吴通华, 姚济敏, 等, 2020.青藏高原表层土壤热通量的时空分布特征[J].高原气象39(4): 706-718.DOI: 10.7522/j.issn. 1000-0534.2020.00022.
null
叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社.
null
岳平, 张强, 杨金虎, 等, 2011.黄土高原半干旱草地地表能量通量及闭合率[J].生态学报, (22): 225-235.
null
张超, 田荣湘, 茆慧玲, 等, 2018.青藏高原中东部地区地表感热通量的时空变化特征[J].气候变化研究进展14(2): 127-136.
null
张强, 王蓉, 岳平, 等, 2017.复杂条件陆-气相互作用研究领域有关科学问题探讨[J].气象学报75(1): 39-56.
null
周秀骥, 赵平, 陈军明, 等, 2009.青藏高原热力作用对北半球气候影响的研究[J].中国科学: 地球科学39(11): 1473-1486.
null
左大康, 周允华, 项月琴, 等, 1991.地球表层辐射研究[M].北京: 科学出版社, 37-39.
Outlines

/