Study on the Atmospheric Boundary Layer Structure of the Qinghai-Xizang Plateau under the South Branch of the Westerly Wind and the Plateau Monsoon Circulation Field

  • Wei FU ,
  • Maoshan LI ,
  • Shucheng YIN ,
  • Zhao LV ,
  • Lingzhi WANG ,
  • Lei SHU
Expand
  • School of Atmospheric Sciences,Chengdu University of Information Technology/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environmental Change,Chengdu 610225,Sichuan,China

Received date: 2020-07-27

  Revised date: 2021-03-01

  Online published: 2022-03-17

Abstract

Using the second comprehensive scientific expedition of the Qinghai-Xizang Plateau "Land-Atmosphere Interaction and Climate Effect" three-dimensional comprehensive enhanced observation experiment May, July and October 2019 sounding data at the Mount Everest, Nyingchi, Nagqu, Shiquanhe sites and ERA5 reanalysis data.The characteristics of the atmospheric boundary layer structure of the plateau and its relationship with sensible heat and latent heat flux under the control of different wind fields in the south branch of the westerly wind and the plateau monsoon are discussed.Results show that the height of the atmospheric boundary layer at each station under the westerly south branch wind field is higher than that under the summer monsoon wind field.The height of the convective boundary layers of Mount Everest, Nyingchi, Nagqu and Shiquan River in the southwest wind field are 3250, 2250, 2760 and 3500 m respectively.while the height of the convective boundary layers of Mount Everest, Nyingchi, Nagqu and Shiquan River under the plateau monsoon field are 2000 m, 2100 m, 1650 m and 2000 m.The specific humidity of the surface layer at all site is larger on July than it on other months.The specific humidity of the surface layer in Linzhi area is larger than that of the other three regions, and it reaches 12.88 g·kg-1 at the maximum.The wind direction on Mount Everest over 1200 m is dominated by westerly winds in May and October.The wind direction on Nyingchi above 1500 m is dominated by westerly winds in May and October, and in July, winds above 1200 m is dominated by southerly winds.The wind direction of Shiquan River in May and October is dominated by west-southwest wind, and the wind direction of Shiquan River in July is dominated by west-northwest wind.The high-altitude wind speeds of Mount Everest, Nyingchi and Shiquanhe in May and October are much stronger than those in July.The sensible heat flux at each station under the west wind south branch wind field is dominated, and the latent heat flux at each station under the plateau summer wind field is dominated.

Cite this article

Wei FU , Maoshan LI , Shucheng YIN , Zhao LV , Lingzhi WANG , Lei SHU . Study on the Atmospheric Boundary Layer Structure of the Qinghai-Xizang Plateau under the South Branch of the Westerly Wind and the Plateau Monsoon Circulation Field[J]. Plateau Meteorology, 2022 , 41(1) : 190 -203 . DOI: 10.7522/j.issn.1000-0534.2021.00016

References

null
Chandra S Srivastava N Kumar M2018.Vertical structure of atmospheric boundary layer over Ranchi during the summer monsoon season[J].Meteorology and Atmospheric Physics, 131, 765-773.DOI: 10.1007/s00703-018-0600-y.
null
Guo J Miao Y Zhang Y al et2016.The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data[J].Atmospheric Chemistry and Physics16(20): 13309-13319.
null
Liu S Y Liang X Z2010.Observed diurnal cycle climatology of planetary boundary layer height[J].Journal of Climate23(21): 5790-5808.
null
Mamtimin A Wang Y Sayit H al et2020.Seasonal variations of the near-surface atmospheric boundary layer structure in China's Gurbantünggüt desert[J].Advances in Meteorology2020(4): 1-13.DOI: 10.1155/2020/6137237.
null
Saeed U Tiana A J Crewell S al et2014.Atmospheric boundary layer height estimation using combined microwave radiometer and lidar data[J].In World Weather Open Science Conference (p.799).
null
Seibert P Beyrich F Gryning S E al et2000.Review and intercomparison of operational methods for the determination of the mixing height[J].Atmospheric Environment34(7): 1001-1027.
null
Seidel D J Ao C O Li K2010.Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis[J].Journal of Geophysical Research Atmospheres, 115(D16).DOI: 10.1029/2009JD013680.
null
Sullivan P P Moeng C H Stevens B al et1997.Structure of the entrainment zone capping the convective atmospheric boundary layer[J].Journal of the Atmospheric Sciences55(19): 3042-3064.
null
Teixeira J Stevens B Bretherton C S al et2008.Parameterization of the atmospheric boundary layer[J].Bulletin of the American Meteorological Society89(4): 453-458.
null
Wang M Wei W He Q al et2016.Summer atmospheric boundary layer structure in the hinterland of Taklimakan Desert, China[J].Journal of Arid Land8(6): 1-15.
null
陈学龙, 马耀明, 孙方林, 等, 2007.珠峰地区雨季对流层大气的特征分析[J].高原气象26(6): 1280-1286.
null
李斐, 邹捍, 周立波, 等, 2017.WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J].高原气象36(2): 340-357.DOI: 10.7522/j.issn.1000-0534.2016.00041.
null
李家伦, 洪钟祥, 孙菽芬, 2000.青藏高原西部改则地区大气边界层特征[J].大气科学24(3): 301-312.
null
李茂善, 戴有学, 马耀明, 等, 2006.珠峰地区大气边界层结构及近地层能量交换分析[J].高原气象25(5): 807-813.
null
李茂善, 马耀明, 马伟强, 等, 2011.藏北高原地区干、 雨季大气边界层结构的不同特征[J].冰川冻土33( 1): 72-79.
null
李雪洮, 梁捷宁, 郭琪, 等, 2020.利用大涡模式模拟黄土高原地区对流边界层特征[J].高原气象39(3): 523-531.DOI: 10. 7522/j.issn.1000-0534.2019.00050.
null
李英, 胡志莉, 赵红梅, 2012.青藏高原大气边界层结构特征研究综述[J].高原山地气象研究32(4): 91-96.DOI: 10.3969/j.issn.1674-2184.2012.04.018.
null
刘宇, 邹捍, 胡非, 2004.青藏高原珠峰绒布河谷地区大气近地层观测研究[J].高原气象23(4): 512-518.
null
马伟强, 戴有学, 马耀明, 等, 2007.珠峰北坡地区地表辐射和能量季节变化的初步分析[J].高原气象26(6): 1237-1243.
null
马耀明, 姚檀栋, 王介民, 2006.青藏高原能量和水循环试验研究——GAME/Tibet与CAMP/Tibet研究进展[J].高原气象25(2): 344-351.
null
宋星灼, 张宏升, 刘新建, 等, 2006.青藏高原中部地区不稳定大气边界层高度的确定与分析[J].北京大学学报(自然科学版)42(3): 328-333.
null
苏彦入, 吕世华, 范广洲, 2018.青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J].高原气象37(6): 1470-1485.DOI: 10.7522/j.issn.1000-0534.2018.00040.
null
孙方林, 马耀明, 2007.珠穆朗玛峰北坡地区河谷局地环流特征观测分析[J].高原气象26(6): 1187-1190.
null
汤懋苍, 沈志宝, 陈有虞, 1979.高原季风的平均气候特征[J].地理学报34(1): 33-42.
null
王介民, 邱华盛, 2000.中日合作亚洲季风实验——青藏高原实验(GAME-Tibet)[J].中国科学院院刊15(5): 386-388.
null
王树舟, 马耀明, 2008.珠峰地区夏季大气边界层结构初步分析[J].冰川冻土30(4): 681-687.
null
徐桂荣, 崔春光, 周志敏, 等, 2014.利用探空资料估算青藏高原及下游地区大气边界层高度[J].暴雨灾害33(3): 217-227.DOI: 10.3969/j.issn.1004-9045.2014.03.004.
null
徐祥德, 陈联寿, 2006.青藏高原大气科学试验研究进展[J].应用气象学报17(6): 756-772.
null
徐祥德, 周明煜, 陈家宜, 等, 2001.青藏高原地-气过程动力、 热力结构综合物理图象[J].中国科学(D辑: 地球科学)31(5): 428-441.
null
许鲁君, 刘辉志, 徐祥德, 等, 2018.WRF模式对青藏高原那曲地区大气边界层模拟适用性研究[J].气象学报76(6): 955-967.
null
叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社.
null
赵采玲, 李耀辉, 柳媛普, 等, 2019.中国西北地区大气边界层高度变化特征——基于探空资料与ERA-Interim再分析资料[J].高原气象38(6): 1181-1193.DOI: 10.7522/j.issn.1000-0534. 2018.00152.
null
赵平, 李跃清, 郭学良, 等, 2018.青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验[J].气象学报76(6): 833-860.
null
郑汇璇, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地总体输送系数及地面热源特征[J].高原气象38(3): 497-506.DOI: 10.7522/j.issn.1000-0534.2019.00024.
null
周明煜, 徐祥德, 卞林根, 等, 2000.青藏高原大气边界层观测分析与动力学研究[M].北京: 气象出版社.
null
周文, 杨胜朋, 蒋熹, 等, 2018.利用COSMIC掩星资料研究青藏高原地区大气边界层高度[J].气象学报76(1): 117-133.
null
朱春玲, 马耀明, 陈学龙, 2011.青藏高原西部及东南周边地区季风前大气边界层结构分析[J].冰川冻土33(2): 325-333.
Outlines

/