Study on Micrometeorological Characteristics of Near Surface Layer in Emeishan Area

  • Na CHANG ,
  • Maoshan LI ,
  • Lingzhi WANG ,
  • Ming GONG ,
  • Wei FU ,
  • Lei SHU
Expand
  • College of Atmospheric Sciences,Chengdu University of Information Technology / Sichuan Key Laboratory of Plateau Atmosphere and Environment / Joint Laboratory of Climate and Environment Change,Chengdu 610225,Sichuan,China

Received date: 2021-07-15

  Revised date: 2021-11-30

  Online published: 2022-03-17

Abstract

The land surface process of the Qinghai-Xizang (Tibet) Plateau has an important impact on China's weather and climate.Mount Emei is in the southeast edge of the Qinghai-Xizang (Tibet) Plateau.It is necessary place for the eastward movement of the plateau system, and the place where the southwest vortex begins to develop.Based on the atmospheric boundary layer gradient tower data, radiation observation data and surface flux data of Emeishan station on the eastern edge of Qinghai-Xizang (Tibet) Plateau from December 2019 to November 2020, this paper uses the eddy correlation method to analyze the changes of surface flux and evapotranspiration near the surface layer in Emeishan area, and estimates the zero plane displacement, aerodynamic roughness, aerothermal roughness Kinetic and thermodynamic parameters such as momentum flux transport coefficient and sensible heat flux transport coefficient.The main conclusions are as follows: The temperature in the canopy is higher than that in the canopy during the day, but the opposite at night.The relative humidity in the canopy is higher than that on the canopy, and the diurnal variation of wind speed near the ground is more obvious in the upper layer than that in the lower layer.The seasonal variation characteristics of near ground temperature, relative humidity and wind speed are obvious.The vertical wind profile has significantly different correlation and inflection point phenomenon in the canopy and above the canopy.The growth rate of wind speed below the inflection point with height is significantly smaller than that above the inflection point.The annual average value of zero plane displacement d is 10.45 m; The annual mean values of aerodynamic roughness Z 0m and thermodynamic roughness roughness Z 0h are 1.65 m and 9.95 m respectively.The annual average values of momentum flux transport coefficient CD and sensible heat flux transport coefficient CH are 1.58×10-2 and 3.79×10-3 respectively.Aerodynamic roughness fluctuates greatly with season, while aerothermodynamic roughness is opposite.The occurrence times and amount of precipitation have obvious seasonal changes.There are more precipitation days and precipitation in July, and the daily change of precipitation is obvious, showing the typical characteristics of night rain in Western Sichuan Basin.The daily variation amplitude of sensible heat flux and latent heat flux is large.The latent heat flux is dominant in summer and sensible heat transport is dominant in winter.The evapotranspiration of each day mainly occurs from 08:00 (Beijing Time the same as after) to 17:00, and reaches the maximum from 11:00 to 14:00, and the seasonal difference is obvious.

Cite this article

Na CHANG , Maoshan LI , Lingzhi WANG , Ming GONG , Wei FU , Lei SHU . Study on Micrometeorological Characteristics of Near Surface Layer in Emeishan Area[J]. Plateau Meteorology, 2022 , 41(1) : 226 -240 . DOI: 10.7522/j.issn.1000-0534.2021.00111

References

null
Boos W R Kuang Z M2013.Sensitivity of the South Asian monsoon to elevated and non-elevated heating[J].Scientific Reports3(6119): 1192.DOI: 10.1038/srep01192.
null
Duan A M Wang M R Lei Y H al et2013.Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980 -2008[J].Journal of Climate26(1): 261-275.DOI: 10.1175/JCLI-D-11-00669.1.
null
Duan A M Wu G X2010.Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades.Part I: Observations[J].Journal of Climate21(13): 3149-3164.
null
Duan A M Xiao Z X2015.Does the climate warming hiatus exist over the Tibetan Plateau?[J].Scientific Reports, 5: 13711.DOI: 10.1038/srep13711.
null
Foken T Wichura B1996.Tools for quality assessment of surface-based flux measurements[J].Agricultural and Forest Meteorology78(1/2): 83-105.DOI: 10.1016/0168-1923(95)02248-1.
null
Li M S Babel W Tanaka K al et2012.Note on the application of planar-fit rotation for non-omnidirectional sonic anemometers[J].Atmospheric Measurements Techniques Discussions5(5): 7323-7340.DOI: 10.5194/amtd-5-7323-2012.
null
Liu Y M Wu G X Hong J L al et2012.Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II.Change[J].Climate Dynamics39(5): 1183-1195.DOI: 10. 1007/s00382-012-1335-y.
null
Mahrt L1998.Flux sampling errors for aircraft and towers[J].Journal of Atmospheric and Oceanic Technology, 15: 416-429.DOI: 10.1175/1520-0426(1998)015<0416: FSEFAA>2.0.CO; 2.
null
Stull R B1991.边界层气象学导论[M].青岛: 青岛海洋大学出版社, 457.
null
Wang C H Shi H X Hu H L al et2015.Properties of cloud and precipitation over the Tibetan Plateau[J].Advances in Atmospheric Sciences32(11): 1504-1516.DOI: 10.1007/s00376-015-4254-0.
null
Yang K Wu H Qin J al et2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J].Global and Planetary Change, 112: 79-91.DOI: 10. 1016/j.gloplacha.2013.12.001.
null
鲍婧, 2012.黄土高原半干旱区近地层陆气相互作用研究[D].兰州: 兰州大学.
null
陈学龙, 马耀明, 李茂善, 等, 2008.藏北地区近地层大气和土壤特征量分析[J].高原气象27(5): 941-948.
null
丁爱军, 2004.东亚地区低层空气污染物变化特征与输送规律研究[D].南京: 南京大学.
null
冯健武, 刘辉志, 王雷, 等, 2012.半干旱区不同下垫面地表粗糙度和湍流通量整体输送系数变化特征[J].中国科学(地球科学)42(1): 24-33.
null
伏薇, 李茂善, 阴蜀城, 等, 2022.西风南支与高原季风环流场下青藏高原大气边界层结构研究[J/OL].高原气象, 1-14.[2021-11-04].
null
巩远发, 段廷扬, 陈隆勋, 等, 2005.1997/1998年青藏高原西部地区辐射平衡各分量变化特征[J].气象学报63(2): 225-235.DOI: 10.3321/j.issn: 0577-6619.2005.02.009.
null
关德新, 金明淑, 徐浩, 2002.长白山阔叶红松林生长季反射率特征[J].应用生态学报13(12): 1544-1546.DOI: 10.3321/j.issn: 1001-9332.2002.12.006.
null
李栋梁, 章基嘉, 吴洪宝, 1997.夏季青藏高原下垫面感热异常的诊断研究[J].高原气象16(4): 367-375.
null
李国平, 段廷扬, 吴贵芬, 2003.青藏高原西部的地面热源强度及地面热量平衡[J].地理科学23(1): 13-18.DOI: 10.3969/j.issn.1000-0690.2003.01.003.
null
李茂善, 马耀明, 胡泽勇, 等, 2004.藏北高原那曲地区边界层结构初步分析[J].高原气象23(5): 728-732.
null
李茂善, 马耀明, 孙方林, 等, 2008.纳木错湖地区近地层微气象特征及地表通量交换分析[J].高原气象27(4): 727-732.
null
李茂善, 杨耀先, 马耀明, 等, 2012.纳木错(湖)地区湍流数据质量控制和湍流通量变化特征[J].高原气象31(4): 875-884.
null
李英, 李跃清, 赵兴炳, 2008.青藏高原东部与成都平原大气边界层对比分析Ⅰ——近地层微气象学特征[J].高原山地气象研究28(1): 30-35.DOI: 10.3969/j.issn.1674-2184.2008.01.005.
null
李英, 李跃清, 赵兴炳, 2009.青藏高原东坡理塘地区近地层湍流通量与微气象特征研究[J].气象学报67(3): 417-425.DOI: 10.3321/j.issn: 0577-6619.2009.03.008.
null
刘和平, 刘树华, 朱廷曜, 等, 1997.森林冠层空气动力学参数的确定[J].北京大学学报(自然科学版)33(4): 116-122.
null
刘雨佳, 韦志刚, 陈辰, 等, 2020.珠海凤凰山森林下垫面干季和湿季气象要素的对比分析与动量和感热交换系数的参数化研究[J].气候与环境研究25(5): 457-468.
null
吕钊, 李茂善, 刘啸然, 等, 2020.青藏高原东缘峨眉山地区冬季地表能量交换特征研究[J].高原气象39(3): 445-458.DOI: 10.7522/j.issn.1000-0534.2019.00087.
null
马耀明, 姚檀栋, 王介民, 2006.青藏高原能量和水循环试验研究-GAME/Tibet与CAMP/Tibet 研究进展[J].高原气象25(2): 344-351.
null
吴国雄, 刘新, 张琼, 等, 2002.青藏高原抬升加热气候效应研究的新进展[J].气候与环境研究7(2): 184-201.DOI: 10.3878/j.issn.1006-9585.2002.02.06.
null
于贵瑞, 孙晓敏, 2006.陆地生态系统通量观测的原理与方法[M].北京: 高等教育出版社.
null
岳平, 张强, 李耀辉, 等, 2013.半干旱草原下垫面动量和感热总体输送系数参数化关系研究[J].物理学报62(9): 527-535.DOI: 10.7498/aps.62.099202.
null
岳平, 张强, 赵文, 等, 2015.黄土高原半干旱草地近地层湍流温湿特征及总体输送系数[J].高原气象34(1): 21-29.DOI: 10. 7522/j.issn.1000-0534.2013.00170.
null
赵佳伟, 何清, 金莉莉, 等, 2020.塔克拉玛干沙漠腹地起伏地形近地层微气象特征[J].中国沙漠40(2): 144-155.
null
赵兴炳, 刘长炜, 童兵, 等, 2021.青藏高原西部狮泉河陆面过程参数和土壤热属性参数研究[J].高原气象40(4): 711-723.DOI: 10.7522/j.issn.1000-0534.2021.00017.
null
朱宝文, 宋理明, 许存平, 等, 2007.环青海湖地区草地近地层气象要素变化特征[J].中国农业气象28(4): 389-392.DOI: 10. 3969/j.issn.1000-6362.2007.04.010.
Outlines

/