Impacts of Spring Soil Moisture Anomalies in Qinghai-Xizang Plateau on the Summer Precipitation Variability in China
Received date: 2020-08-05
Revised date: 2020-11-16
Online published: 2022-03-17
Using 1979 -2014 Global Land Data Assimilation System-the Community surface parameter data set, China regional daily observation data grid data set (CN05.1) and ERA-interim reanalyze atmospheric circulation data.To study the relationship between the abnormal soil moisture in the Qinghai-Xizang Plateau in May and the surface heat flux in June and the precipitation change in July.The results show that: (1) From 1979 to 2014, the average soil moisture in the 0~10 cm layer area in May was abnormally high years were: 2000, 2001, 2004, 2005, 2006, 2013; the abnormal low years were: 1994, 1995, 1996, 1998, 1999.Soil moisture increased after 2000.Soil moisture increased after 2000.The soil moisture in the higher Tibetan Plateau, the Three Rivers Source Region, and the southern Tibetan valley is significantly higher than in the lower years.The results passed the 90% confidence test.(2) There is a clear correlation between the abnormality of soil moisture in spring and the distribution of summer precipitation in China.When the soil is wet (dry), from high latitude to low latitude, the relevant area is "+ - + -" ("- + - +") banded distribution.(3) The soil is moist in May, and the sensible heat flux in the east and the latent heat flux in the west increase in June.Their combined effect strengthens the convergent circulation of the lower atmosphere and the divergence circulation of the upper layer, so that the East Asia region is controlled by the strong anticyclone circulation above 850 hPa.The 500 hPa and above in the northeast of the plateau is an anticyclone circulation, and the south and west are cyclonic circulations.This circulation field configuration makes the South Asian high pressure move eastward and the Western Pacific subtropical high pressure.(4) In July, the Huanghuai area on the north side of the Pacific High has a vertical upward movement.The warm and moist air flow converges with the dry and cold air flow on the west side of the northeast cold vortex.High-level divergence and low-level convergence are conducive to precipitation in Huanghuai area.The eastern northwestern and northern China regions are controlled by anticyclonic circulation, with strong sinking movement, dry and cold air, and insufficient water vapor transport, which is unfavorable for precipitation.
Xu DING , Xin LAI , Guangzhou FAN . Impacts of Spring Soil Moisture Anomalies in Qinghai-Xizang Plateau on the Summer Precipitation Variability in China[J]. Plateau Meteorology, 2022 , 41(1) : 24 -34 . DOI: 10.7522/j.issn.1000-0534.2020.00094
null | |
null | |
null | |
null | |
null | Namias, Jerome, 1959.Recent seasonal interactions between north pacific waters and the overlying atmospheric circulation [J].Journal of Geophysical Research, 64(6), 631-646.DOI: 10.1029/JZ064i006p00631. |
null | |
null | |
null | |
null | |
null | 岑思弦, 巩远发, 赖欣, 等, 2014.青藏高原东部与其北侧热力差异与高原季风及长江流域夏季降水的关系[J].气象学报, 72(2): 256-265.DOI: 10.11676/qxxb2014.020. |
null | 陈海山, 孙照渤, 2005.青藏高原单点地气交换过程的模拟试验[J].高原气象, 24(1): 9-15. |
null | 陈永仁, 李跃清, 齐冬梅, 2011.南亚高压和西太平洋副热带高压的变化及其与降水的联系[J].高原气象, 30(5): 1148-1157. |
null | 丁旭, 赖欣, 范广洲, 等, 2018.再分析土壤温湿度资料在青藏高原地区适用性的分析[J].高原气象, 37(3): 626-641.DOI: 10. 7522/j.issn.1000-0534.2017.00060. |
null | 段安民, 刘屹岷, 吴国雄, 2003.4~6月青藏高原热状况与盛夏东亚降水和大气环流的异常[J].中国科学: 地球科学, 33(10): 997-1004.DOI: 10.3321/j.issn: 1006-9267.2003.10.011. |
null | 葛旭阳, 朱永禔, 2001.青藏高原热力状况异常特征及其与长江中下游地区夏季降水的关系[J].气象科学, 21(2): 147-153. |
null | 李登宣, 王澄海, 2016.青藏高原春季土壤湿度与中国东部夏季降水之间的关系[J].冰川冻土, 38(1): 89-99. |
null | 李建平, 任荣彩, 齐义泉, 等, 2013.亚洲区域海-陆-气相互作用对全球和亚洲气候变化的作用研究进展[J].大气科学, 37 (2): 518-538. |
null | 李元寿, 贾晓红, 齐艳军, 等, 2019.多年冻土区土壤蒸散发对气候变化的敏感性分析[J].高原气象, 38(6): 1293-1299.DOI: 10.7522/j.issn.1000-0534.2019.00077. |
null | 梁乐宁, 陈海山, 2010.春季华南土壤湿度异常与中国夏季降水的可能联系[J].大气科学学报, 33(5): 537-546.DOI: 10.3969/j.issn.1674-7097.2010.05.004 |
null | 刘川, 余晔, 解晋, 等, 2015.多套土壤温湿度资料在青藏高原的适用性[J].高原气象, 34(3): 653-665.DOI: 10.7522/j.issn. 1000-0534.2015.00034. |
null | 刘新, 李伟平, 吴国雄, 2002.夏季青藏高原加热和北半球环流年际变化的相关分析[J].气象学报, 60(3): 267-277.DOI: 10. 3321/j.issn: 0577-6619.2002.03.002. |
null | 施能, 魏凤英, 封国栋, 等, 1997.气象场相关分析及合成分析中蒙特卡洛检验方法及应用[J].南京气象学院学报, 20(3): 355-359. |
null | 屠厚旺, 田红瑛, 许曦然, 等, 2020.南亚高压南北位移对亚洲季风区上对流层-下平流层区域大气成分分布的影响[J].高原气象, 39(2): 333-346.DOI: 10.7522/j.issn.1000-0534.2019. 00054. |
null | 王澄海, 董文杰, 韦志刚, 2003.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报, 46(3): 438-441.DOI: 10.3321/j.issn: 0001-5733.2003.03.005. |
null | 王静, 祁莉, 何金海, 等, 2016.青藏高原春季土壤湿度与我国长江流域夏季降水的联系及其可能机理[J].地球物理学报, 59(11): 3985-3995. |
null | 吴佳, 高学杰, 2013.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报, 56(4): 1102-1111. |
null | 徐祥德, 赵天良, 施晓晖, 等, 2015.青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J].气象学报, 73(1): 20-35. |
null | 杨成, 吴通华, 姚济敏, 等, 2020.青藏高原表层土壤热通量的时空分布特征[J].高原气象, 39(4): 706-718.DOI: 10.7522/j.issn.1000-0534.2020.00022. |
null | 张文纲, 李述训, 庞强强, 2008.近45年青藏高原土壤温度的变化特征分析.地理学报, 63(11): 1151-1159.DOI: 10.3321/j.issn: 0375-5444.2008.11.004 |
null | 赵永晶, 钱永甫, 2009.全球海温异常对中国降水异常的影响[J].热带气象学报, 25(5): 561-570.DOI: 10.3969/j.issn.1004-4965.2009.05.006. |
/
〈 |
|
〉 |