Simulation Analysis of Soil Water and Heat Characteristics in High and Low Snowfall Years on the Qinghai-Xizang Plateau

  • Jiangxin LUO ,
  • Shihua Lü ,
  • Cuili MA ,
  • Xuewei FANG
Expand
  • 1. Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    3. Baotou Meteorological Bureau,Baotou 014030,Inner-Mongolia,China

Received date: 2020-02-17

  Revised date: 2020-04-24

  Online published: 2022-03-17

Abstract

Snow cover and frozen soil on the Qinghai-Xizang Plateau (QXP) play an important role in the global water cycle.In this paper, the Regional Climate Model (RegCM4) coupled with the Community Land Model (CLM4.5) was utilized to conduct regional simulation experiments on the QXP.This was done to explore the mechanism of snow influence on soil water and heat transfer during freezing-thawing periods.Our results showed that RegCM4-CLM4.5 can effectively simulate the characteristics of high and low snowfall years on the QXP, and the center of simulated snow depth was 10~20 cm higher than remote sensing snow depth.The simulation effect of soil temperature was better than that of soil moisture.The correlation coefficient R of simulated soil temperature was 0.95~0.98, and the correlation coefficient R of simulated soil moisture was 0.68~0.89.Comparison of the simulated soil temperature and moisture content of high and low snowfall years on the QXP revealed that the abnormal amount of snowfall had heat preservation and humidification effect on soil.During freezing period, the soil temperature in high snowfall year is higher than that in low snowfall year.During melting period, the soil moisture content in high snowfall year is higher than that in low snowfall year.The frozen soil would also hinder the infiltration of snow melt water, so the difference of soil moisture between the high and low snowfall years was not more than ± 2%.In permafrost area, when there was more snowfall, the freezing depth increased, which was conducive to the development of frozen soil.And in seasonal permafrost area, the increase of snowfall was not conducive to the development of frozen soil.

Cite this article

Jiangxin LUO , Shihua Lü , Cuili MA , Xuewei FANG . Simulation Analysis of Soil Water and Heat Characteristics in High and Low Snowfall Years on the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022 , 41(1) : 35 -46 . DOI: 10.7522/j.issn.1000-0534.2020.00031

References

null
Che T Li X Jin R al et2008.Snow depth derived from passive microwave remote-sensing data in China[J].Annals of Glaciology, 49: 145-154.
null
Dai L Y Che T Ding Y J2015.Inter-calibrating SMMR, SSM/I and SSMI/S data to improve the consistency of snow-depth products in China[J].Remote Sensing, 7: 7212-7230.DOI: 10.3390/ rs70607212.
null
Dai L Y Che T Wang J al et2012.Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J].Remote Sensing of Environment, 127: 14-29.
null
Dente L Vekerdy Z Wen J al et2012.Maqu network for validation of satellite-derived soil moisture products[J].International Journal of Applied Earth Observation and Geoinformation, 17: 55-65.
null
Fu Q Hou R J Li T X al et2018.Effects of soil water and heat relationship under various snow cover during freezing-thawing periods in Songnen Plain, China[J].Scientific Reports8(1): 1-12.
null
Mackay A2008.Climate Change 2007: Impacts, adaptation and vulnerability.Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change[J].Journal of Environmental Quality37(6): 2407.
null
Su B Yang K2019.Time-lapse observation dataset of soil temperature and humidity on the Tibetan Plateau2008 -2016) [DB].National Tibetan Plateau Data Center.DOI: 10.11888/Soil.tpdc. 270110.
null
Su Z B Rosnay P D Wen J G al et2013.Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau[J].Journal of Geophysical Research118(11): 5304-5318.
null
Su Z B Wen J Dente L al et2011.The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products[J].Hydrology and Earth System Sciences15(7): 2303-2316.
null
Zhang T J2005.Influence of the seasonal snow cover on the ground thermal regime: An overview[J].Reviews of Geophysics43(4): RG4002.
null
边晴云, 吕世华, 文莉娟, 等, 2017.黄河源区不同降雪年土壤冻融过程及其水热分布对比分析[J].干旱区研究34(4): 906-911.
null
陈渤黎, 罗斯琼, 吕世华, 等, 2014a.陆面模式CLM对若尔盖站冻融期模拟性能的检验与对比[J].气候与环境研究19(5): 649-658.
null
陈渤黎, 2014b.青藏高原土壤冻融过程陆面能水特征及区域气候效应研究[D].北京: 中国科学院研究生院.
null
付强, 蒋睿奇, 王子龙, 等, 2015.不同积雪覆盖条件下冻融土壤水分运动规律研究[J].农业机械学报46(10): 152-159.
null
高骏强, 2017.冻土对气候变化的响应及基于POD方法的降维外推算法研究[D].北京: 华北电力大学.
null
胡汝骥, 陈曦, 葛拥晓, 等, 2015.冰冻圈过程对中国干旱区水文环境的影响评估[J].干旱区研究32(1): 1-6.
null
金会军, 金晓颖, 何瑞霞, 等, 2019.两万年来的中国多年冻土形成演化[J].中国科学(地球科学)49(8): 1197-1212.
null
梁玲, 李跃清, 胡豪然, 等, 2009.RegCM3模式对青藏高原温度和降水的模拟及检验[J].气象科学29(5): 47-53.
null
李时越, 杨凯, 王澄海, 等, 2018.陆面模式CLM 4.5在青藏高原土壤冻融期的偏差特征及其原因[J].冰川冻土40(2): 322-334.
null
李小兰, 2013.青藏高原冬春积雪异常与中国东部地区夏季降水的时空关系研究[D].兰州: 兰州大学.
null
秦大河, 周波涛, 效存德, 2014.冰冻圈变化及其对中国气候的影响[J].气象学报72(5): 869-879.
null
任贾文, 明镜, 2014.IPCC第五次评估报告对冰冻圈变化的评估结果要点[J].气候变化研究进展10(1): 25-28.
null
师锐, 2007.寒区陆面过程特征的模拟研究[D].兰州: 兰州大学.
null
王澄海, 董文杰, 韦志刚, 2003.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报46(3): 309-316.
null
王顺久, 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象36(5): 1153-1164.DOI: 10.7522/j.issn. 1000-0534.2016.00117.
null
王婷, 李照国, 吕世华, 等, 2019.青藏高原积雪对陆面过程热量输送的影响研究[J].高原气象38(5): 920-934.DOI: 10.7522/j.issn.1000-0534.2019.00026.
null
韦志刚, 吕世华, 1995.青藏高原积雪的分布特征及其对地面反照率的影响[J].高原气象14(1): 67-73.
null
谢志鹏, 胡泽勇, 刘火霖, 等, 2017.陆面模式CLM 4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象36(1): 1-12.DOI: 10.7522/j.issn.1000-0534.2016.00012.
null
姚闯, 吕世华, 王婷, 等, 2019.黄河源区多、 少雪年土壤冻融特征分析[J].高原气象38(3): 474-483.DOI: 10.7522/j.issn. 1000-0534.2018.00142.
null
杨凯, 胡田田, 王澄海, 2017.青藏高原南、 北积雪异常与中国东部夏季降水关系的数值试验研究[J].大气科学41(2): 345-356.
null
余莲, 2011.青藏高原地区气候变化的特征及数值模拟研究[D].兰州: 兰州大学.
null
袁源, 赖欣, 巩远发, 等, 2019.CLM 4.5模式对青藏高原土壤湿度的数值模拟及评估[J].大气科学43(3): 676-690.
null
周建玮, 2007.高原积雪和海温异常影响西北夏季气候的数值模拟[D].南京: 南京信息工程大学.
Outlines

/