The Characteristics of the Water Vapor Transport under The Condition of Dry and Wet Evolution in the Source Region of the Yellow River
Received date: 2020-04-29
Revised date: 2020-07-06
Online published: 2022-03-17
By analyzing Soil Moisture Anomaly Percentage Index (SMAPI) at different soil layers, dry-wet evolution of the source region of the Yellow River (SRYR) during 2008 -2017 are investigated using observations from the Maqu-Ruoergai soil temperature and moisture monitoring network.To diagnose the water vapor transportation path and potential water vapor sources in different processes, the Lagrange Flexible Particle Dispersion Model (FLEXPART), which is driven by reanalysis data (National Centers for Environmental Prediction Final, NECP FNL), are used to simulate the backward trajectories of target particles.The results show that the water vapor transportation path can be divided into three categories: (1) South Branch transportation.The water vapor origins from the Indian Ocean and the Arabian Sea, and finally arrives at the SRYR by way of the Indian Peninsula and Bay of Bengal; (2) East Branch transportation.The water vapor is from the Pacific Ocean and the South China Sea, then passes through the Yangtze River Basin, and finally arrives at the SRYR from eastern and southern flank of the Tibetan Plateau; (3) North Branch transportation.The water vapor is from the Atlantic Ocean, the northern African continent, and the European continent, then arrives at the SRYR from the western or northern side of the Tibetan Plateau by way of the mid-latitude Eurasian continent.Moreover, the North Branch is dominant in dry period, whereas the South and East branches are prominent in wet period.The water vapor sources also show discrepancies for dry and wet periods.The water vapor sources of the Tibetan Plateau are mainly distributed around the Kunlun Mountains during wet period, and are scattered distributed from north to south during transitional period, and are located around the Tianshan during dry period.The intensity of the water vapor sources of the Iranian Plateau, Pamir Plateau, and the Bay of Bengal gradually strengthen from wet to dry period, the intensity of the water vapor sources of the Sichuan Basin-Qinling Mountains and south China enhanced first and then weakened, while the source of Qilian Mountain-Loess Plateau weakened after enhanced.The intensity of water vapor sources over the middle and lower reaches of the Yangtze River and around East China has been weakening from the wet period to the dry period.
Yu LIU , Rong LIU , Xin WANG , Zuoliang WANG , Dayong WANG . The Characteristics of the Water Vapor Transport under The Condition of Dry and Wet Evolution in the Source Region of the Yellow River[J]. Plateau Meteorology, 2022 , 41(1) : 47 -57 . DOI: 10.7522/j.issn.1000-0534.2020.00057
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象, 39(3): 467-476.DOI: 10.7522/j.issn.1000-0534.2019.00120. |
null | 陈斌, 徐祥德, 施晓晖, 2011.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区[J].气象学报, 69(5): 810-818.DOI: 0577-6619(2011)69: 5<810: LGLRFF>2.0.TX; 2-H. |
null | 陈丹, 周长艳, 齐冬梅, 2019.夏季青藏高原及周边大气热源与四川盆地暴雨的关系[J].高原气象, 38(6): 1149-1157.DOI: 10.7522/j.issn.1000-0534.2019.00041. |
null | 陈子萱, 2008.人工扰动对玛曲高寒沙化草地植物多样性和生产力的影响[D].兰州: 甘肃农业大学. |
null | 杜一博, 张强, 王凯嘉, 等, 2018.西北干旱区夏季晴天、 阴天边界层结构及其陆面过程对比分析 [J].高原气象, 37(1): 148-157.DOI: 10.7522/j.issn.1000-0534.2017.00042. |
null | 郭洁, 李国平, 2007.若尔盖气候变化及其对湿地退化的影响[J].高原气象, 26(2): 422-428. |
null | 胡梦玲, 游庆龙, 2019.青藏高原南侧经圈环流变化特征及其对降水影响分析[J].高原气象, 38(1): 14-28.DOI: 10.7522/j.issn.1000-0534.2018.00064. |
null | 康红文, 谷湘潜, 付翔, 等, 2005.我国北方地区降水再循环率的初步评估[J].应用气象学报, 16(2): 139-147.DOI: 1001-7313(2005)16: 2<139: WGBFDQ>2.0.TX; 2-V. |
null | |
null | 李耀辉, 翟颖佳 译, 2013.青藏高原夏季旱涝与大尺度环流的关系[J].干旱气象, 31(4): 845-858.DOI: 10.11755/j.issn.1006-7639(2013)-04-0845. |
null | 常姝婷, 刘玉芝, 华珊, 等, 2019.全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J].高原气象, 38(2): 227-236.DOI: 10.7522/j.issn.1000-0534.2018.00080. |
null | 刘彩红, 朱西德, 石顺吉, 等, 2009.“三江源”夏季降水异常与大气环流异常的关系[J].气象, 35(7): 39-45.DOI: 1000-0526(2009)35: 7<39: SJYXJJ>2.0.TX; 2-7. |
null | 刘菊菊, 游庆龙, 王楠, 2019.青藏高原夏季云水含量及其水汽输送年际异常分析[J].高原气象, 38(3): 449-459.DOI: 10. 7522/j.issn.1000-0534.2018.00138. |
null | 苏彦入, 吕世华, 范广洲, 2018.青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J].高原气象, 37(6): 1470-1485.DOI: 10.7522/j.issn.1000-0534.2018.00040. |
null | 王可丽, 程国栋, 丁永建, 等, 2006.黄河、 长江源区降水变化的水汽输送和环流特征[J].冰川冻土, 28(1): 8-14. |
null | 王素萍, 王劲松, 张强, 等, 2020.多种干旱指数在中国北方的适用性及其差异原因初探[J].高原气象, 39(3): 628-640.DOI: 10.7522/j.issn.1000-0534.2019.00049. |
null | 王作亮, 文军, 李振朝, 等, 2019.典型干旱指数在黄河源区的适宜性评估[J].农业工程学报, 35(21): 186-195.DOI: 10.11975/j.issn.1002-6819.2019.21.022. |
null | 吴志勇, 陆桂华, 郭红丽, 等, 2012.基于模拟土壤含水量的干旱监测技术[J].河海大学学报(自然科学版), 40(1): 28-32. |
null | 吴志勇, 徐征光, 肖恒, 等, 2018.基于模拟土壤含水量的长江上游干旱事件时空特征分析[J].长江流域资源与环境, 27(1): 176-184.DOI: 10.11870/cjlyzyyhj201801020. |
null | 徐祥德, 陶诗言, 王继志, 等, 2002.青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J].气象学报, 60(3): 257-266.DOI: 0577-6619(2002)60: 3<257: QZGYJF>2.0.TX; 2-5. |
null | 许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029. |
null | 张林燕, 郑巍斐, 杨肖丽, 等, 2019.基于CMIP5多模式集合和PDSI的黄河源区干旱时空特征分析 [J].水资源保护, 35(6): 95-99+137.DOI: 10.3880/j.issn.1004-6933.2019.06.014. |
null | 赵娜娜, 王贺年, 张贝贝, 等, 2019.若尔盖湿地流域径流变化及其对气候变化的响应[J].水资源保护, 35(5): 40-47.DOI: 10. 3880/j.issn.1004-6933.2019.05.008. |
null | 赵阳, 2019.青藏高原大地形影响背景下对流结构及水汽输送特征对下游暴雨的影响机理[D].北京: 中国气象科学研究院. |
null | 周青, 赵凤生, 高文华, 2008.NCEP/NCAR逐时分析与中国实测地表温度和地面气温对比分析[J].气象, 34(2): 83-91.DOI: 1000-0526(2008)34: 2<83: NNZSFX>2.0.TX; 2-N. |
null | 朱丽, 刘蓉, 王欣, 等, 2019.基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J].高原气象, 38(3): 484-496.DOI: 10.7522/j.issn.1000-0534.2019.00015. |
/
〈 |
|
〉 |