The Characteristics of the Water Vapor Transport under The Condition of Dry and Wet Evolution in the Source Region of the Yellow River

  • Yu LIU ,
  • Rong LIU ,
  • Xin WANG ,
  • Zuoliang WANG ,
  • Dayong WANG
Expand
  • 1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. university of Chinese academy of sciences,Beijing 100049,China
    3. Shanxi Climate Center,Taiyuan 030006,Shanxi,China

Received date: 2020-04-29

  Revised date: 2020-07-06

  Online published: 2022-03-17

Abstract

By analyzing Soil Moisture Anomaly Percentage Index (SMAPI) at different soil layers, dry-wet evolution of the source region of the Yellow River (SRYR) during 2008 -2017 are investigated using observations from the Maqu-Ruoergai soil temperature and moisture monitoring network.To diagnose the water vapor transportation path and potential water vapor sources in different processes, the Lagrange Flexible Particle Dispersion Model (FLEXPART), which is driven by reanalysis data (National Centers for Environmental Prediction Final, NECP FNL), are used to simulate the backward trajectories of target particles.The results show that the water vapor transportation path can be divided into three categories: (1) South Branch transportation.The water vapor origins from the Indian Ocean and the Arabian Sea, and finally arrives at the SRYR by way of the Indian Peninsula and Bay of Bengal; (2) East Branch transportation.The water vapor is from the Pacific Ocean and the South China Sea, then passes through the Yangtze River Basin, and finally arrives at the SRYR from eastern and southern flank of the Tibetan Plateau; (3) North Branch transportation.The water vapor is from the Atlantic Ocean, the northern African continent, and the European continent, then arrives at the SRYR from the western or northern side of the Tibetan Plateau by way of the mid-latitude Eurasian continent.Moreover, the North Branch is dominant in dry period, whereas the South and East branches are prominent in wet period.The water vapor sources also show discrepancies for dry and wet periods.The water vapor sources of the Tibetan Plateau are mainly distributed around the Kunlun Mountains during wet period, and are scattered distributed from north to south during transitional period, and are located around the Tianshan during dry period.The intensity of the water vapor sources of the Iranian Plateau, Pamir Plateau, and the Bay of Bengal gradually strengthen from wet to dry period, the intensity of the water vapor sources of the Sichuan Basin-Qinling Mountains and south China enhanced first and then weakened, while the source of Qilian Mountain-Loess Plateau weakened after enhanced.The intensity of water vapor sources over the middle and lower reaches of the Yangtze River and around East China has been weakening from the wet period to the dry period.

Cite this article

Yu LIU , Rong LIU , Xin WANG , Zuoliang WANG , Dayong WANG . The Characteristics of the Water Vapor Transport under The Condition of Dry and Wet Evolution in the Source Region of the Yellow River[J]. Plateau Meteorology, 2022 , 41(1) : 47 -57 . DOI: 10.7522/j.issn.1000-0534.2020.00057

References

null
Dente L Su Z Wen J2012a.Validation of SMOS soil moisture products over the Maqu and Twente regions[J].Sensors (Basel)12(8): 9965-9986.DOI: 10.3390/s120809965.
null
Dente L Vekerdy Z Wen J al et2012b.Maqu network for validation of satellite-derived soil moisture products[J].International Journal of Applied Earth Observation and Geoinformation, 17: 55-65.DOI: 10.1016/j.jag.2011.11.004.
null
Dong Y C Li G P Yuan M al et2017.Evaluation of five grid datasets against radiosonde data over the eastern and downstream regions of the Tibetan Plateau in summer[J].Atmosphere8(3): 19.DOI: 10.3390/atmos8030056.
null
Guan X Yang L Zhang Y al et2019.Spatial distribution, temporal variation, and transport characteristics of atmospheric water vapor over Central Asia and the arid region of China[J].Global and Planetary Change, 172: 159-178.DOI: 10.1016/j.gloplacha.2018.06.007.
null
Held I M Soden B J2000.Water vapor feedback and global warming[J].Annual Review of Energy and the Environment, 25: 441-475.DOI: 10.1146/annurev.energy.25.1.441.
null
Liu Y Liu Y Wang W2019.Inter-comparison of satellite-retrieved and Global Land Data Assimilation System-simulated soil moisture datasets for global drought analysis[J].Remote Sensing of Environment, 220: 1-18.DOI: 10.1016/j.rse.2018.10.026.
null
Sims A P Niyogi D D S Raman S2002.Adopting drought indices for estimating soil moisture: A North Carolina case study[J].Geophysical Research Letters29(8): 24-1-24-4.DOI: 10. 1029/2001GL013343.
null
Stohl A James P2004.A Lagrangian analysis of the atmospheric branch of the global water cycle.part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe[J].Journal of Hydrometeorology5(4): 656-678.DOI: 10.1175/1525-7541(2004)005<0656: ALAOTA>2.0.CO; 2.
null
Su Z Wen J Dente L al et2011.The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products[J].Hydrology and Earth System Sciences15(7): 2303-2316.DOI: 10.5194/hess-15-2303-2011.
null
Sun B Wang H2014.Moisture Sources of Semiarid Grassland in China Using the Lagrangian Particle Model FLEXPART[J].Journal of Climate27(6): 2457-2474.DOI: 10.1175/JCLI-D-13-00517.1.
null
Sun B Wang H2015.Analysis of the major atmospheric moisture sources affecting three sub-regions of East China[J].International Journal of Climatology35(9): 2243-2257.DOI: 10.1002/joc.4145.
null
Sun B Wang H2018.Interannual variation of the spring and summer precipitation over the three river source region in China and the associated regimes[J].Journal of Climate31(18): 7441-7457.DOI: 10.1175/JCLI-D-17-0680.1.
null
Trenberth K E1998.Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change[J].Climatic Change39(4): 667-694.DOI: 10.1023/A: 1005319109110.
null
Wu Z Y Lu G H Wen L al et2011.Reconstructing and analyzing China's fifty-nine year (1951–2009) drought history using hydrological model simulation[J].Hydrology and Earth System Sciences15(9): 2881-2894.DOI: 10.5194/hess-15-2881-2011.
null
Xu X D Shi X Y Wang Y Q al et2008.Data analysis and numerical simulation of moisture source and transport associated with summer precipitation in the Yangtze River Valley over China[J].Meteorology and Atmospheric Physics100(1-4): 217-231.DOI: 10.1007/s00703-008-0305-8.
null
Xu X Zhao T Lu C al et2014.An important mechanism sustaining the atmospheric "water tower" over the Tibetan Plateau [J].Atmospheric Chemistry and Physics14(20): 11287-11295.DOI: 10.5194/acp-14-11287-2014.
null
Yang S Zhang W Chen B al et2020.Remote moisture sources for 6-hour summer precipitation over the Southeastern Tibetan Plateau and its effects on precipitation intensity[J].Atmospheric Research, 236.DOI: 10.1016/j.atmosres.2019.104803.
null
Zhang C Tang Q H Chen D L2017.Recent Changes in the Moisture Source of Precipitation over the Tibetan Plateau[J].Journal of Climate30(5): 1807-1819.DOI: 10.1175/JCLI-D-15-0842.1.
null
曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象39(3): 467-476.DOI: 10.7522/j.issn.1000-0534.2019.00120.
null
陈斌, 徐祥德, 施晓晖, 2011.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区[J].气象学报69(5): 810-818.DOI: 0577-6619(2011)69: 5<810: LGLRFF>2.0.TX; 2-H.
null
陈丹, 周长艳, 齐冬梅, 2019.夏季青藏高原及周边大气热源与四川盆地暴雨的关系[J].高原气象38(6): 1149-1157.DOI: 10.7522/j.issn.1000-0534.2019.00041.
null
陈子萱, 2008.人工扰动对玛曲高寒沙化草地植物多样性和生产力的影响[D].兰州: 甘肃农业大学.
null
杜一博, 张强, 王凯嘉, 等, 2018.西北干旱区夏季晴天、 阴天边界层结构及其陆面过程对比分析 [J].高原气象37(1): 148-157.DOI: 10.7522/j.issn.1000-0534.2017.00042.
null
郭洁, 李国平, 2007.若尔盖气候变化及其对湿地退化的影响[J].高原气象26(2): 422-428.
null
胡梦玲, 游庆龙, 2019.青藏高原南侧经圈环流变化特征及其对降水影响分析[J].高原气象38(1): 14-28.DOI: 10.7522/j.issn.1000-0534.2018.00064.
null
康红文, 谷湘潜, 付翔, 等, 2005.我国北方地区降水再循环率的初步评估[J].应用气象学报16(2): 139-147.DOI: 1001-7313(2005)16: 2<139: WGBFDQ>2.0.TX; 2-V.
null
黎小燕, 吴志勇, 陆桂华, 2014.三种干旱指数在西南地区的应用及相关性分析[J].水电能源科学32(5): 1-5.DOI: 1000-7709(2014)05-0001-05.
null
李耀辉, 翟颖佳 译, 2013.青藏高原夏季旱涝与大尺度环流的关系[J].干旱气象31(4): 845-858.DOI: 10.11755/j.issn.1006-7639(2013)-04-0845.
null
常姝婷, 刘玉芝, 华珊, 等, 2019.全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J].高原气象38(2): 227-236.DOI: 10.7522/j.issn.1000-0534.2018.00080.
null
刘彩红, 朱西德, 石顺吉, 等, 2009.“三江源”夏季降水异常与大气环流异常的关系[J].气象35(7): 39-45.DOI: 1000-0526(2009)35: 7<39: SJYXJJ>2.0.TX; 2-7.
null
刘菊菊, 游庆龙, 王楠, 2019.青藏高原夏季云水含量及其水汽输送年际异常分析[J].高原气象38(3): 449-459.DOI: 10. 7522/j.issn.1000-0534.2018.00138.
null
苏彦入, 吕世华, 范广洲, 2018.青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J].高原气象37(6): 1470-1485.DOI: 10.7522/j.issn.1000-0534.2018.00040.
null
王可丽, 程国栋, 丁永建, 等, 2006.黄河、 长江源区降水变化的水汽输送和环流特征[J].冰川冻土28(1): 8-14.
null
王素萍, 王劲松, 张强, 等, 2020.多种干旱指数在中国北方的适用性及其差异原因初探[J].高原气象39(3): 628-640.DOI: 10.7522/j.issn.1000-0534.2019.00049.
null
王作亮, 文军, 李振朝, 等, 2019.典型干旱指数在黄河源区的适宜性评估[J].农业工程学报35(21): 186-195.DOI: 10.11975/j.issn.1002-6819.2019.21.022.
null
吴志勇, 陆桂华, 郭红丽, 等, 2012.基于模拟土壤含水量的干旱监测技术[J].河海大学学报(自然科学版)40(1): 28-32.
null
吴志勇, 徐征光, 肖恒, 等, 2018.基于模拟土壤含水量的长江上游干旱事件时空特征分析[J].长江流域资源与环境27(1): 176-184.DOI: 10.11870/cjlyzyyhj201801020.
null
徐祥德, 陶诗言, 王继志, 等, 2002.青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J].气象学报60(3): 257-266.DOI: 0577-6619(2002)60: 3<257: QZGYJF>2.0.TX; 2-5.
null
许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.
null
张林燕, 郑巍斐, 杨肖丽, 等, 2019.基于CMIP5多模式集合和PDSI的黄河源区干旱时空特征分析 [J].水资源保护35(6): 95-99+137.DOI: 10.3880/j.issn.1004-6933.2019.06.014.
null
赵娜娜, 王贺年, 张贝贝, 等, 2019.若尔盖湿地流域径流变化及其对气候变化的响应[J].水资源保护35(5): 40-47.DOI: 10. 3880/j.issn.1004-6933.2019.05.008.
null
赵阳, 2019.青藏高原大地形影响背景下对流结构及水汽输送特征对下游暴雨的影响机理[D].北京: 中国气象科学研究院.
null
周青, 赵凤生, 高文华, 2008.NCEP/NCAR逐时分析与中国实测地表温度和地面气温对比分析[J].气象34(2): 83-91.DOI: 1000-0526(2008)34: 2<83: NNZSFX>2.0.TX; 2-N.
null
朱丽, 刘蓉, 王欣, 等, 2019.基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J].高原气象38(3): 484-496.DOI: 10.7522/j.issn.1000-0534.2019.00015.
Outlines

/