Study on Water Vapor Transport Source and Path of Rainstorm in Sanjiangyuan Area

  • Meiyue WANG ,
  • Lei WANG ,
  • Xiehui LI ,
  • Chunyuan WANG ,
  • Xiangyue WANG
Expand
  • 1. College of Atmospheric Science,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,Chengdu 610225,Sichuan,China
    3. Zhuanghe Meteorological Bureau,Zhuanghe 116400,Liaoning,China

Received date: 2020-08-17

  Revised date: 2020-11-20

  Online published: 2022-03-17

Abstract

Based on the NCAR/NCEP reanalysis data, the weather situation and water vapor transport characteristics of two typical rainstorm weather processes in Sanjiangyuan on July 22-23 ("0722") and August 2-3 ("0802") were analyzed firstly.Then, the WRF model was used to output data for driving the HYSPLIT model to quantitatively analyzing the water vapor transport of the two storms.The results show: (1) The main influence systems of the two rainstorms are the vortex and shear lines formed in the eastern region of Sanjiangyuan and the evolution and advance and retreat of the vortex system has great influence on the intensity and fall area of the rainstorms.(2) The HYSPLIT model uses the high-resolution data output from the WRF model as the initial field and the simulation works well.(3) There are three main moisture transport routes for the “0722” rainstorm: 10 days before the rainstorm, the gas blocks in the northwest path were located in the western region of Xinjiang and entered the Sanjiangyuan via the northern Qinghai-Xizang Plateau, the moisture transport contribution rate is 16%; The air parcels in the southwest path originate from the north of the Bay of Bengal and are transported to Sanjiangyuan through the water vapor transport channel of the Yarlung Zangbo River Grand Canyon, with the water vapor transport contribution rate is 41.5%; Water vapor in the southwest path existed in Guangxi 10 days ago and transported to the rainstorm area through Sichuan and other places, with water vapor transport contribution rate acbeing 42.5%.(4) The water vapor of the "0802" rainstorm is mainly transported to the Sanjiangyuan area via four routes: one route is southwest, and the water vapor of the Bay of Bengal is transported to the rainstorm area through the Yarlung Zangbo River Grand Canyon, the water vapor transport contribution rate is 28%.The remaining three are southeast routes: ten days ago, the main source of water vapor appeared in Guizhou and Hunan and is transported to Sanjiangyuan in the northwest direction, the contribution rate of water vapor transportation of the three routes being 23%, 23% and 26%, respectively.(5) In general, the main water vapors for the two rainstorms come from the southwest and southeast paths.The water vapors in the southwest path come from the Bay of Bengal and are transported to the rainstorm area through the Water vapor transport channel of the Yarlung Zangbo River Grand Canyon.The water vapors along the southeast path are transferred-toward the northwest from Guangdong and Hunan to the rainstorm area.For the rainstorm of "0722", there are also water vapors transport along the northwest path, which has a small contribution rate.

Cite this article

Meiyue WANG , Lei WANG , Xiehui LI , Chunyuan WANG , Xiangyue WANG . Study on Water Vapor Transport Source and Path of Rainstorm in Sanjiangyuan Area[J]. Plateau Meteorology, 2022 , 41(1) : 68 -78 . DOI: 10.7522/j.issn.1000-0534.2020.00097

References

null
Brimelow J C Reuter G W2005.Transport of atmospheric moisture during three extreme rainfall events over the Mackenzie River Basin[J].Journal of Hydrometeorology6(4): 423-440.DOI: 10. 1175/JHM430.1.
null
Challa V S Indrcanti J Baham J M al et2008.Sensitivity of atmospheric dispersion simulations by HYSPLIT to the meteorological predictions from a mesoscale model[J].Environmental Fluid Mechanics8(4): 367-387.DOI: 10.1007/s10652-008-9098-z.
null
Draxler R R Stunde B Rolph G2009.Hysplit_4 Users Guide[R].NOAA Technical Memorandum ERL ARL-224.
null
James P Stohl A Spichtinger N al et2004.Climatological aspects of the extreme European rainfall of August 2002 and a trajectory method for estimating the associated evaporative source regions[J].Natural Hazards and Earth System Sciences4(56): 733-746.DOI: 10.5194/nhess-4-733-2004.
null
Li Y Szeto K Stewart R E al et2017.A Numerical Study of the June 2013 Flood-Producing Extreme Rainstorm over Southern Alberta[J].Journal of Hydrometeorology18(8): 2057-2078.DOI: 10.1175/JHM-D-15-0176.1.
null
Nieto R Gimeno L Trigo R2006.A Lagrangian identification of major sources of Sahel moisture[J].Geophysical Research Letters33(18): 273-274.DOI: 10.1029/2006GL027232.
null
Srinivas C V Hari Prasad K B R R Naidu C V al et2016.Sensitivity analysis of atmospheric dispersion simulations by FLEXPART to the WRF-simulated meteorological predictions in a coastal environment[J].Pure and Applied Geophysics173(2): 675-700.DOI: 10.1007/s00024-015-1104-z.
null
Sodemann H Schwierz C Wernli H2008.Interannual variability of greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence[J].Journal of Geophysical Research Atmospheres113(D3): 107-111.DOI: 10.1029/2007JD008503.
null
Wernli H1997.A Lagrangian-based analysis of extratropical cyclones II: A detailed case-study[J].Quarterly Journal of the Royal Meteorological Society123(1): 1677-1706.DOI: 10.1002/qj. 49712354211.
null
Xu D X Lu C G Shi X H al et2008.World water tower: An atmospheric perspective[J].John Wiley and Sons Ltd35(20): 815-816.DOI: 10.1029/2008GL035867.
null
Shen Y Xiong A Y2016.Validation and comparison of a new gauge‐based precipitation analysis over mainland China[J].International Journal of Climatology36(1): 252-265.DOI: 10.1002/joc.4341.
null
陈红专, 叶成志, 陈静静, 等, 2019.2017年盛夏湖南持续性暴雨过程的水汽输送和收支特征分析[J].气象45(9): 1213-1226.DOI: 10.7519/j.issn.1000-0526.2019.09.003.
null
高登义, 2008.雅鲁藏布江水汽通道考察研究[J].自然杂志30(5): 301-303.DOI: 10.3969/j.issn.0253-9608.2008.05.011.
null
李生辰, 李栋梁, 赵平, 等, 2009.青藏高原“三江源地区”雨季水汽输送特征[J].气象学报67(4): 591-598.DOI: 10.11676/qxxb2009.059.
null
刘菊菊, 游庆龙, 王楠, 2019.青藏高原夏季云水含量及其水汽输送年际异常分析[J].高原气象38(3): 449-459.DOI: 10. 7522/j.issn.1000-0534.2018.00138.
null
马京津, 高晓清, 2006.华北地区夏季平均水汽输送通量和轨迹的分析[J].高原气象25(5): 893-899.
null
权晨, 陈斌, 赵天良, 等, 2016.拉格朗日水汽源诊断方法在三江源区的应用[J].应用气象学报27(6): 688-697.DOI: 10. 11898/1001-7313.20160605.
null
王佳津, 王春学, 陈朝平, 等, 2015.基于HYSPLIT4的一次四川盆地夏季暴雨水汽路径和源地分析[J].气象41(11): 1315-1327. DOI: 10.7519/j.issn.1000-0526.2015.11.002.
null
谢欣汝, 游庆龙, 保云涛, 等, 2018.基于多源数据的青藏高原夏季降水与水汽输送的联系[J].高原气象37(1): 78-92.DOI: 10.7522/j.issn.1000-0534.2017.00030.
null
许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.
null
杨逸畴, 高登义, 李渤生, 1987.雅鲁藏布江下游河谷水汽通道初探[J].中国科学 (B辑 化学 生物学 农学 医学 地学)1(8): 97-106.
null
姚俊强, 杨青, 毛炜峄, 等, 2018.基于HYSPLIT4的一次新疆天山夏季特大暴雨水汽路径分析[J].高原气象37(1): 68-77.DOI: 10.7522/j.issn.1000-0534.2017.00031.
null
苏琳, 袁自冰, 冯志雄, 等, 2016.Hysplit后向轨迹对初始气象场水平及垂直分辨率的敏感性研究(英文)[J].热带气象学报32(6): 864-877.DOI: 10.16032/j.issn.1004-4965.2016.06.008.
null
曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象39(3): 467-476.DOI: 10.7522/j.issn.1000-0534.2019.00120.
null
卓嘎, 徐祥德, 陈联寿, 2002.青藏高原夏季降水的水汽分布特征[J].气象科学1(1): 1-8.DOI: 10.3969/j.issn.1009-0827. 2002.01.001.
null
朱丽, 刘蓉, 王欣, 等, 2019.基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J].高原气象38(3): 484-496.DOI: 10.7522/j.issn.1000-0534.2019.00015.
Outlines

/