A Simulation Study on Soil Parameterization Scheme of Seasonally Frozen Ground Regions based on CLM4.5

  • Chunwei FU ,
  • Zeyong HU ,
  • Shan LU ,
  • Di WU ,
  • Weiwei FAN
Expand
  • 1. Key laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. Center for Excellence in Tibetan Plateau Earth Science,Chinese Academy of Science,Beijing 100101,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China
    4. Shaanxi Meteorological Service Center,Xi’an 710014,Shaanxi,China

Received date: 2020-12-31

  Revised date: 2021-05-31

  Online published: 2022-03-17

Abstract

In this paper, the field observation data provided by Naqu station of Plateau Climate and Environment in northern Qinghai-Xizang(Tibetan) Plateau, located in the seasonally frozen ground regions, CLM4.5 is used to analyze and evaluate the simulation ability of thermal conductivity parameterization schemes of Luo, Johansen, and C?té as well as virtual temperature parameterization scheme to calculate soil temperature and humidity, providing basis for the future work of selecting the optimal parameters and parameterization schemes to more reasonably simulate the freeze-thaw process of frozen soil on Tibet Plateau.The results suggested that: (1) The soil thermal conductivity of three parameterization schemes was significantly different, of which the C?té scheme had the highest soil thermal conductivity, while the Luo scheme had the lowest.(2) All the three-soil heat conductivity parameterization schemes can reasonably simulate the daily variation trend of soil temperature and humidity.The Johansen scheme can better simulate the annual variation trend of soil temperature, the C?té scheme has a smaller deviation from the observed value in soil temperature simulation, and Luo scheme has a better simulation on soil moisture.(3) After adding the virtual temperature equation and introducing the phase transition efficiency parameter, the negative deviation of the model for soil moisture simulation is reduced.In addition to maintaining good simulation ability of soil temperature, the Y-L scheme can further improve the simulation ability of soil moisture.

Cite this article

Chunwei FU , Zeyong HU , Shan LU , Di WU , Weiwei FAN . A Simulation Study on Soil Parameterization Scheme of Seasonally Frozen Ground Regions based on CLM4.5[J]. Plateau Meteorology, 2022 , 41(1) : 93 -106 . DOI: 10.7522/j.issn.1000-0534.2021.00050

References

null
Campbell G S1974.A simple method for determining unsaturated conductivity from moisture retention data[J].Soil Science117(6): 311-314.
null
Chen Y Y Yang K Tang W J al et2012.Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for Eastern Tibet grasslands[J].Science China Earth Sciences55(6): 1001-1011.
null
Cosby B J Hornberger G M Clapp R B al et1984.A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J].Water Resources Research20(6): 682-690.
null
C?té J Konrad J M2005a.Thermal conductivity of base-course materials[J].Canadian Geotechnical Journal42(1): 61-78.
null
C?té J Konrad J M2005b.A generalized thermal conductivity model for soils and construction materials[J].Canadian Geotechnical Journal42(2): 443-458.
null
Dai Y J Wei N Yuan H al et2019.Evaluation of soil thermal conductivity schemes for use in land surface modeling[J].Journal of Advances in Modeling Earth Systems11(11): 3454-3473.
null
Farouki O T1981.The thermal properties of soils in cold regions[J].Cold Regions Science and Technology5(1): 67-75.
null
Farouki O T1986.Thermal Properties of Soils[J].Series on Rock and Soil Mechanics, 11: 29-68, 102-119.
null
Gardner W R1958.Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J].Soil Science85(4): 228-232.
null
Johansen O1977.Thermal conductivity of soils[D].Norway: University of Trondheim.
null
Kersten M S1949.Thermal Properties of Soils[J].University of Minesota, Institute of Technology, Engieering Experiment Station, Bulletin 28: pp 228.
null
Li Y Hu Z Y2009.A study on parameterization of surface albedo over grassland surface in the northern Tibetan Plateau[J].Advances in Atmospheric Sciences26 (1): 161-168, DOI: 10. 1007/s00376-009-0161-6.
null
LuS, Ren T S Gong Y S al et2007.An improved model for predicting soil thermal conductivity from water content at room temperature[J].Soil Science Society of America Journal71(1): 8-14.
null
Luo S Q Fang X W Lyu S H al et2017.Interdecadal changes in the freeze depth and period of frozen soil on the Three Rivers Source Region in China from 1960 to 2014[J].Advances in Meteorology, 2017: 1-14, DOI: 10.1155/2017/5931467.
null
Qian B D Gregorich E Gameda S al et2011.Observed soil temperature trends associated with climate change in Canada[J].Journal of Geophysical Research Atmospheres116(D2): 3-25.
null
Swenson S C Lawrence D M Lee H2012.Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model[J].Journal of Advances in Modeling Earth Systems4(3): 1-15.
null
Tarnocai C Canadell J G Schuur E A G al et2009.Soil organic carbon pools in the northern circumpolar permafrost region[J].Global Biogeochemical Cycles23(2): 1-11.
null
Yang K Wang C H Li S Y2018.Improved simulation of frozen‐thawing process in land surface model (CLM4.5)[J].Journal of Geophysical Research: Atmospheres123(23): 13238-13258.
null
Yang M X Nelson F E Shiklomanov N I al et2010.Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research[J].Earth-Science Reviews103(1/2): 31-44.
null
陈博, 李建平, 2008.近年来中国季节性冻土与短时冻土的时空变化特征[J].大气科学32(3): 432-443.
null
陈渤黎, 2014a.青藏高原土壤冻融过程陆面能水特征及区域气候效应研究[D].兰州: 中国科学院寒区旱区环境与工程研究所.
null
陈渤黎, 罗斯琼, 吕世华, 等, 2014b.黄河源区若尔盖站冻融期土壤温、 湿度的模拟与改进[J].高原气象33(2): 337-345, DOI: 10.7522/j.issn.1000-0534.2013.00085.
null
陈瑞, 杨梅学, 万国宁, 等, 2020.基于水热变化的青藏高原土壤冻融过程研究进展[J].地理科学进展39(11): 1944-1958.
null
范继辉, 鲁旭阳, 王小丹, 2014.藏北高寒草地土壤冻融循环过程及水热分布特征[J].山地学报32(4): 385-392.
null
高荣, 董文杰, 韦志刚, 2008.青藏高原季节性冻土的时空分布特征[J].冰川冻土30(5): 740-744.
null
郭东林, 2012.青藏高原冻土对地表水热交换的影响和对气候变暖的响应[D].合肥: 中国科学院大学.
null
胡国杰, 赵林, 李韧, 等, 2014, 青藏高原多年冻土区土壤冻融期间水热运移特征分析[J].土壤46(2): 355-360.
null
李卫朋, 范继辉, 沙玉坤, 等, 2014.藏北高寒草原土壤温度变化与冻融特征[J].山地学报32(4): 407-416.
null
李震坤, 朱伟军, 武炳义, 2011.大气环流模式 CAM 中土壤冻融过程改进对东亚气候模拟的影响[J].大气科学35(4): 683-693.
null
刘火霖, 胡泽勇, 杨耀先, 等, 2015.青藏高原那曲地区冻融过程的数值模拟研究[J].高原气象34(3): 676-683.DOI: 10.7522/j.issn.1000-0534.2015.00021.
null
刘火霖, 胡泽勇, 程思, 等, 2016.基于Noah-LSM模式和CoLM模式的青藏高原中部陆面过程模拟[J].冰川冻土38(6): 1501-1509.DOI: 10.7522/j.issn.1000-0240.2016.0175.
null
刘火霖, 胡泽勇, 韩赓, 等, 2020.基于Noah-MP模式的影响青藏高原冻融过程参数化方案评估[J].高原气象39(1): 1-14.DOI: 10.7522/j.issn.1000-0534.2019.00009.
null
罗斯琼, 吕世华, 张宇, 等, 2008.CoLM 模式对青藏高原中部 BJ 站陆面过程的数值模拟[J].高原气象27(2): 259-271.
null
罗斯琼, 吕世华, 张宇, 等, 2009.青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J].地球物理学报52(4): 919-928.
null
王澄海, 董文杰, 韦志刚, 2001.青藏高原季节性冻土年际变化的异常特征[J].地理学报56(5): 522-530.
null
王澄海, 师锐, 左洪超, 2007.青藏高原西部冻融期陆面过程的模拟分析[J].高原气象26(2): 239-248.
null
王愚, 胡泽勇, 荀学义, 等, 2013.藏北高原土壤热传导率参数化方案的优化和检验[J].高原气象32 (3): 646-653, DOI: 10. 7522/j.issn.1000-0534.2015.00021.
null
谢志鹏, 胡泽勇, 刘火霖, 等, 2017.陆面模式CLM 4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象36(1): 1-12.DOI: 10.7522/j.issn.1000-0534.2016.00012.
null
徐学祖, 王家澄, 张立新, 2001.冻土物理学[M].北京: 科学出版社.
null
杨梅学, 姚檀栋, 何元庆, 2002.青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J].山地学报20(5): 553-558.
null
张强, 王胜, 卫国安, 2003.西北地区戈壁局地陆面物理参数的研究[J].地球物理学报46(5): 616-623.
null
赵林, 胡国杰, 邹德富, 等, 2019.青藏高原多年冻土变化对水文过程的影响[J].中国科学院院刊34(11): 1233-1246.
Outlines

/