Improvement and Verification of Freezing-Thawing Process Parameterization of BCC_AVIM Land Surface Process Model

  • Pengfei XU ,
  • Shihua Lü ,
  • Cuili MA ,
  • Yue XU ,
  • Jiangxin LUO ,
  • Yiming HUANG ,
  • Yu KOU
Expand
  • 1. Sichuan Provincial Key Laboratory of Plateau Atmosphere and Environment,School of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Resources and Environment,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    3. Baotou Meteorological Bureau,Baotou 014030,Inner-Mongolia,China
    4. Hengshan Meteorological Bureau,Hengshan 421300,Hunan,China
    5. Tumen Meteorological Bureau,Tumen 133100,Jilin,China

Received date: 2021-05-26

  Revised date: 2021-12-28

  Online published: 2022-04-20

Cite this article

Pengfei XU , Shihua Lü , Cuili MA , Yue XU , Jiangxin LUO , Yiming HUANG , Yu KOU . Improvement and Verification of Freezing-Thawing Process Parameterization of BCC_AVIM Land Surface Process Model[J]. Plateau Meteorology, 2022 , 41(2) : 349 -362 . DOI: 10.7522/j.issn.1000-0534.2021.00121

References

null
Austnes K Vestgarden L S2008.Prolonged frost increases release of C and N from a montane heathland soil in southern Norway[J].Soil Biology and Biochemistry40(10), 2540-2546.DOI: 10. 1016/j.soilbio.2008.06.014 .
null
Boone A Masson V Meyers T al et2000.The influence of the inclusion of soil freezing on simulations by a soil-vegetation-atmosphere transfer scheme[J].Journal of Applied Meteorology39(9), 1544-1569.DOI: 10.1175/1520-0450(2000)039<1544: TIOTIO>2.0.CO; 2 .
null
Campbell J L Socci A M Templer P H2014.Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest[J].Global Change Biology20(8), 2663-2673.DOI: 10.1111/gcb.12532 .
null
Cheng G Wu T2007.Responses of permafrost to climate change and their environmental significance, Qinghai‐Tibet Plateau[J].Journal of Geophysical Research: Earth Surface, 112(F2).DOI: 10.1029/2006JF000631 .
null
Cherkauer K A Lettenmaier D P1999.Hydrologic effects of frozen soils in the upper Mississippi River basin[J].Journal of Geophysical Research: Atmospheres, 104(D16), 19599-19610.DOI: 10.1029/1999JD900337 .
null
De Luca T H Keeney D R Mc Carty G W1992.Effect of freeze‐thaw events on mineralization of soil nitrogen[J].Biology and Fertility of Soils14(2), 116-120.DOI: 10.1007/BF00336260 .
null
Deng M Meng X Lyv Y al et2020.Comparison of soil water and heat transfer modeling over the Tibetan Plateau using two Community Land Surface Model (CLM) versions[J].Journal of Advances in Modeling Earth Systems12(10), e2020MS002189.DOI: 10.1029/2020MS002189 .
null
Farouki O T1981.The thermal properties of soils in cold regions[J].Cold Regions Science and Technology5(1), 67-75.DOI: 10.1016/0165-232X(81)90041-0 .
null
Fuchs M Campbell G S Papendick R I1978.An analysis of sensible and latent heat flow in a partially frozen unsaturated soil[J].Soil Science Society of America Journal42(3), 379-385.DOI: 10.2136/sssaj1978.03615995004200030001x .
null
Jordan R1991.A one‐dimensional temperature model for a snow cover: Technical documentation for SNTHERM.89[R].Hanover: Cold Region Research and Engineers Laboratory.
null
Koren V Schaake J Mitchell K al et1999.A parameterization of snowpack and frozen ground intended for NCEP weather and climate models[J].Journal of Geophysical Research: Atmospheres, 104(D16), 19569-19585.DOI: 10.1029/1999JD900232 .
null
Kozlowski T2009.Some factors affecting supercooling and the equilibrium freezing point in soil‐water systems[J].Cold Regions Science and Technology59(1), 25-33.DOI: 10.1016/j.coldregions.2009.05.009 .
null
Kulik V Y1978.Water infiltration into soil[M].Gidrometeoizdat, Moscow, 10.
null
Kurylyk B L Watanabe K2013.The mathematical representation of freezing and thawing processes in variably‐saturated, non‐deformable soils[J].Advances in Water Resources, 60, 160-177.DOI: 10.1016/j.advwatres.2013.07.016 .
null
Luo L Robock A Vinnikov K Y al et2003.Effects of frozen soil on soil temperature, spring infiltration, and runoff: Results from the PILPS 2 (d) experiment at Valdai, Russia[J].Journal of Hydrometeorology4(2), 334-351.DOI: 10.1175/1525-7541(2003)4<334: EOFSOS>2.0.CO; 2 .
null
Niu G Y Yang Z L2006.Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J].Journal of Hydrometeorology7(5), 937-952.DOI: 10.1175/JHM538.1 .
null
Oleson K W Niu G Y Yang Z L al et2008.Improvements to the Community Land Model and their impact on the hydrological cycle[J].Journal of Geophysical Research: Biogeosciences, 113(G1).DOI: 10.1029/2007JG000563 .
null
Peng X Frauenfeld O W Cao B al et2016.Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across China[J].Journal of Geophysical Research: Earth Surface121(11), 1984-2000.DOI: 10.1002/2016JF003876 .
null
Poutou E Krinner G Genthon C al et2004.Role of soil freezing in future boreal climate change[J].Climate Dynamics23(6), 621-639.DOI: 10.1007/s00382-004-0459-0 .
null
Spaans E J Baker J M1996.The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic[J].Soil Science Society of America Journal60(1), 13-19.
null
Wang F L Bettany J R1993. Influence of freeze‐thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil[J].Journal of Environmental Qualotu22(4): 709-714.doi: 10.2134/jeq1993. 00472425002200040011x .
null
Watanabe T Tateno R Imada S al et2019.The effect of a freeze‐thaw cycle on dissolved nitrogen dynamics and its relation to dissolved organic matter and soil microbial biomass in the soil of a northern hardwood forest[J].Biogeochemistry142(3), 319-338.DOI: 10.1007/s10533-019-00537-w .
null
Yang K Wang C Li S2018.Improved simulation of frozen‐thawing process in land surface model (CLM4.5)[J].Journal of Geophysical Research: Atmospheres123(23), 13-238.DOI: 10. 1029/2017JD028260 .
null
Zhang X Sun S F Xue Y2007.Development and testing of a frozen soil parameterization for cold region studies[J].Journal of Hydrometeorology8(4), 690-701.DOI: 10.1175/JHM605.1 .
null
Zhang X Sun S2011.The impact of soil freezing/thawing processes on water and energy balances[J].Advances in Atmospheric Sciences28(1), 169-177.DOI: 10.1007/s00376-010-9206-0 .
null
Zheng D van der Velde R Su Z al et2018.Impact of soil freeze‐thaw mechanism on the runoff dynamics of two Tibetan rivers[J].Journal of hydrology, 563, 382-394.DOI: 10.1016/j.jhydrol.2018.06.024 .
null
陈渤黎, 2014.青藏高原土壤冻融过程陆面能水特征及区域气候效应研究[D].兰州: 中国科学院寒区旱区环境与工程研究所.
null
葛骏, 余晔, 李振朝, 等, 2016.青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J].高原气象35(3): 608-620.DOI: 10.7522/j.issn.1000-0534.2016.00032 .
null
郭东林, 杨梅学, 2010.SHAW模式对青藏高原中部季节冻土区土壤温、 湿度的模拟[J].高原气象29(6): 1369-1377.
null
李述训, 南卓铜, 赵林, 2002.冻融作用对地气系统能量交换的影响分析[J].冰川冻土22(5): 506-511.DOI: 10.3969/j.issn.1000-0240.2002.05.005
null
李文静, 罗斯琼, 郝晓华, 等, 2021.青藏高原东部不同季节积雪过程对地表能量和土壤水热影响的观测研究[J].高原气象40(3): 455-471.DOI: 10.7522/j.issn.1000-0534.2020.00001 .
null
刘火霖, 胡泽勇, 韩赓, 等, 2020.基于Noah-MP模式的影响青藏高原冻融过程参数化方案评估[J].高原气象39(1): 1-14.DOI: 10.7522/j.issn.1000-0534.2019.00009 .
null
刘宜纲, 吕世华, 马翠丽, 等, 2022.区域气候模式RegCM砾石参数化方案在青藏高原不同区域土壤水分输送的模拟分析[J].高原气象41(1): 79-92.DOI: 10.7522/j.issn.1000-0534. 2020.00086 .
null
陆宣承, 文军, 田辉, 等, 2020.若尔盖高寒湿地-大气间水热交换湍流通量的日变化特征分析[J].高原气象39(4): 719-728.DOI: 10.7522/j.issn.1000-0534.2019.00073 .
null
马翠丽, 吕世华, 潘永洁, 等, 2020.陆面模式砾石参数化在BCC_AVIM陆面过程模式中的应用及检验[J].高原气象39(6): 1232-1245.DOI: 10.7522/j.issn.1000-0534.2019.00129 .
null
齐木荣, 马千惠, 杨清华, 等, 2020.青藏高原冻结期地表热储分析——以鄂陵湖畔草地为例[J].高原气象39(6): 1270-1281.DOI: 10.7522/j.issn.1000-0534.2019.00134 .
null
尚伦宇, 吕世华, 李锁锁, 等, 2010.青藏高原土壤冻融对地表辐射特征的影响分析[J].太阳能学报31(1): 12-16.
null
苏有琦, 张宇, 宋敏红, 等, 2020.基于实测土壤属性CLM 4.5对青藏高原高寒草甸模拟性能的评估[J].高原气象39(6): 1295-1308.DOI: 10.7522/j.issn.1000-0534.2019.000136 .
null
孙少波, 陈报章, 车涛, 等, 2017.青藏高原季节性冻土湿度模拟及参数优化——以黑河上游为例[J].高原气象36(3): 643-656.DOI: 10.7522/j.issn.1000-0534.2016.00059 .
null
王澄海, 杨凯, 张飞民, 等, 2021.青藏高原土壤冻融过程的气候效应: 进展和展望[J].高原气象40(6): 1318-1336.DOI: 10. 7522/j.issn.1000-0534.2021.zk021 .
null
吴统文, 宋连春, 李伟平, 等, 2014.北京气候中心气候系统模式研发进展——在气候变化研究中的应用[J].气象学报72(1): 12-29.DOI: 10.11676/qxxb2013.084
null
武月月, 文军, 王作亮, 等, 2022.黄河源高寒草原下垫面土壤冻融过程中陆-气间的水热交换特征分析[J].高原气象41(1): 132-142.DOI: 10.7522/j.issn.1000-0534.2021.00014 .
null
杨梅学, 姚檀栋, 勾晓华, 2000.青藏公路沿线土壤的冻融过程及水热分布特征[J].自然科学进展, (5): 61-68.DOI: 10. 3321/j.issn: 1002-008X.2000.05.010 .
null
姚闯, 吕世华, 王婷, 等, 2019.黄河源区多、 少雪年土壤冻融特征分析[J].高原气象38(3): 474-483.DOI: 10.7522/j.issn. 1000-0534.2018.00142 .
Outlines

/