The Characteristics of Water Vapor Transport and Potential Sources of the Abnormal Summer Rainfall in Sanjiangyuan Region

  • Xianyu YANG ,
  • Yaqiong LU ,
  • Jun WEN ,
  • Xianhong MENG ,
  • Xinbing REN
Expand
  • 1. College of Atmospheric Sciences/ Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Northwest Institute of Eco-Environment andResources Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    3. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,Sichuan,China
    4. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2021-10-13

  Revised date: 2022-03-01

  Online published: 2022-04-20

Cite this article

Xianyu YANG , Yaqiong LU , Jun WEN , Xianhong MENG , Xinbing REN . The Characteristics of Water Vapor Transport and Potential Sources of the Abnormal Summer Rainfall in Sanjiangyuan Region[J]. Plateau Meteorology, 2022 , 41(2) : 465 -476 . DOI: 10.7522/j.issn.1000-0534.2022.00015

References

null
Bosilovich M G Sud Y C Schubert S D al et2003.Numerical simulation of the large‐scale North American monsoon water sources[J].Journal of Geophysical Research: Atmospheres, 108(D16).DOI: 10.1029/2002JD003095 .
null
Bosilovich M G Schubert S D2002.Water vapor tracers as diagnostics of the regional hydrologic cycle[J].Journal of Hydrometeorology3(2): 149-165.DOI: 10.1175/1525-7541(2002)003<0149: WVTADO>2.0.CO; 2 .
null
Christensen J H Christensen O B2003.Severe summertime flooding in Europe[J].Nature421(6925): 805-806.DOI: 10.1038/421805a .
null
Gimeno L Nieto R Trigo R M al et2010.Where does the Iberian Peninsula moisture come from?An answer based on a Lagrangian Approach[J].Journal of Hydrometeorology11(2): 421-436.DOI: 10.1175/2009JHM1182.1 .
null
Gimeno L Stohl A Trigo R M al et2012.Oceanic and terrestrial sources of continental precipitation[J].Reviews of Geophysics50(4): RG4003.DOI: 10.1029/2012RG000389 .
null
Hartigan A Wong J A1979.Algorithm AS 136: A K-Means Clustering Algorithm[J].Journal of the Royal Statistical Society28(1): 100-108.DOI: 10.2307/2346830 .
null
Koster R Jouzel J Suozzo R al et1986.Global sources of local precipitation as determined by the Nasa/Giss GCM[J].Geophysical Research Letters13(2).DOI: 10.1029/GL013i002p00121 .
null
Longinelli A Selmo E2003.Isotopic composition of precipitation in Italy: A first overall map[J].Journal of Hydrology270(1-2): 75-88.DOI: 10.1016/S0022-1694(02)00281-0 .
null
Moody J L Galloway J N2010.Quantifying the relationship between atmospheric transport and the chemical composition of precipitation on Bermuda[J].Tellus, 40B(5): 463-479.DOI: 10.3402/tellusb.v40i5.16014 .
null
Ralph F M Neiman P J Wick G A al et2012.Flooding on California's Russian River: Role of atmospheric rivers[J].Geophysical Research Letters33(13).DOI: 10.1029/2006GL026689 .
null
Schaer C Vidale P L Luethi D al et2004.The role of increasing temperature variability in European summer heatwaves[J].Nature427(6972): 332-336.DOI: 10.1038/nature02300 .
null
Schneider E K Kirtman B P Lindzen R S1999.Tropospheric water vapor and climate sensitivity[J].Journal of the Atmospheric Sciences56(11): 1649-1658.DOI: 10.1175/1520-0469(1999)056<1649: TWVACS>2.0.CO; 2 .
null
Sodemann H Masson-Delmotte V Schwierz C al et2008.Interannual variability of Greenland winter precipitation sources: 2.Effects of North Atlantic Oscillation variability on stable isotopes in precipitation[J].Journal of Geophysical Research, 113(D12).DOI: 10.1029/2007JD009416 .
null
Stohl A2006.Characteristics of atmospheric transport into the Arctic troposphere[J].Journal of Geophysical Research, 111(D11).DOI: 10.1029/2005jd006888 .
null
Stohl A Forster C Frank A al et2005a.Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2[J].Atmospheric Chemistry and Physics5(9): 2461-2474.DOI: 10.5194/ACP-5-2461-2005 .
null
Stohl A Forster C Sodemann H2008.Remote sources of water vapor forming precipitation on the Norwegian west coast at 60N-a tale of hurricanes and an atmospheric river[J].Journal of Geophysical Research113(D5): 1-13.DOI: 10.1029/2007JD009006 .
null
Stohl A Hittenberger M Wotawa G1998.Validation of the Lagrangian particle dispersion model FLEXPART against largescale tracer experiment data[J].Atmospheric Environment, 32: 4245-4264.DOI: 10.1016/S1352-2310(98)00184-8 .
null
Stohl A James P2004.A Lagrangian Analysis of the atmospheric branch of the global water cycle.Part I: Method Description, Validation, and Demonstration for the August 2002 Flooding in Central Europe[J].Journal of Hydrometeorology5(4): 656-678.DOI: 10.1175/1525-7541(2004)005<0656: ALAOTA>2.0.CO; 2 .
null
Stohl A James P2005b.A Lagrangian Analysis of the atmospheric branch of the global water cycle.Part II: Moisture Transports between earth's ocean basins and river catchments[J].Journal of Hydrometeorology6(6): 961-984.DOI: https: //doi.org/10.1175/JHM470.1 .
null
Sun B Wang H J2014a.Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART[J].Journal of Climate27 (6): 2457-2474.DOI: 10.1175/JCLI-D-13-00517.1 .
null
Sun B Wang H J2014b.Analysis of the major atmospheric moisture sources affecting three sub-regions of East China[J].International Journal of Climatology35(9): 2243-2257.DOI: 10.1002/joc.4145 .
null
Trenberth K E1998.Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change[J].Climatic Change39(4): 667-694.DOI: 10.1023/A: 1005319109110 .
null
Werner M Heimann M Hoffman G2001.Isotopic composition and origin of polar precipitation in present and glacial climate simulations[J].Tellus B: Chemical and Physical Meteorology, 53: 53-71.DOI: 10.3402/tellusb.v53i1.16539 .
null
Wernli B H Da Vies H C1997.A lagrangian-based analysis of extratropical cyclones.I: The method and some applications[J].Quarterly Journal of the Royal Meteorological Society123(538): 467-489.DOI: 10.1002/qj.49712353811 .
null
曾小凡, 苏布达, 易善桢, 等, 2013.1971~2010年三江源地区水汽输送变化分析[J].气候变化研究进展9(3): 187-191.DOI: 10.3969/j.issn.1673-1719.2013.03.005 .
null
陈斌, 2009.青藏高原及其周边区域夏季上对流层水汽变化和输送特征研究[D].北京: 中国气象科学研究院.
null
陈斌, 徐祥德, 施晓晖, 2011.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区[J].气象学报69(5): 810-818.DOI: 10.11676/qxxb2011.071 .
null
董李丽, 2019.青藏高原"敏感区"地表通量, 水汽输送结构对长江中下游梅雨期异常降水的综合影响特征[D].北京: 中国气象科学研究院.
null
黄建平, 刘玉芝, 王天河, 等, 2021.青藏高原及周边地区气溶胶、 云和水汽收支研究进展[J].高原气象40(6): 1225-1240.DOI: 10.7522/j.issn.1000-0534.2021.zk012 .
null
赖欣, 范广洲, 华维, 等, 2021.青藏高原陆气相互作用对东亚区域气候影响的研究进展[J].高原气象40(6): 1263-1277.DOI: 10.7522/j.issn.1000-0534.2021.zk018 .
null
李生辰, 李栋梁, 赵平, 等, 2009.青藏高原“三江源地区”雨季水汽输送特征[J].气象学报67(4): 591-598.DOI: 10.11676/qxxb2009.059 .
null
鲁春霞, 谢高地, 成升魁, 等, 2004.青藏高原的水塔功能[J].山地学报22(4): 428-432.DOI: 10.3969/j.issn.1008-2786. 2004.04.008 .
null
马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象40(6): 1241-1262.DOI: 10.7522/j.issn.1000-0534.2021.zk006 .
null
强安丰, 汪妮, 魏加华, 等, 2020.近50年三江源地区云水资源分布及降水效率研究[J].应用基础与工程科学学报28(3): 85-104.DOI: 10.16058/j.issn.1005-0930.2020.03.007 .
null
权晨, 2014.三江源区地—气水汽交换及输送的气候效应研究[D].南京: 南京信息工程大学.
null
许建玉, 王慧娟, 李宏毅, 2014.夏季青藏高原地区水汽收支的初步模拟分析[J].高原气象33(5): 1173-1181.DOI: 10.7522/j.issn.1000-0534.2013.00117 .
null
杨建平, 丁永建, 刘时银, 等, 2003.长江黄河源区冰川变化及其对河川径流的影响[J].自然资源学报18(5): 595-602.DOI: 10.11849/zrzyxb.2003.05.012 .
null
赵阳, 2019.青藏高原大地形影响背景下对流结构及水汽输送特征对下游暴雨的影响机理[D].北京: 中国气象科学研究院.
null
周顺武, 吴萍, 王传辉, 2011.青藏高原夏季上空水汽含量演变特征及其与降水的关系[J].地理学报66(11): 1466-1478.DOI: 10.11821/xb201111003 .
null
朱丽, 刘蓉, 王欣, 等, 2019.基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J].高原气象38(3): 484-496.DOI: 10.7522/j.issn.1000-0534.2019.00015 .
Outlines

/