Evaluation of Complementary Relationship Model on Land Surface Actual Evapotranspiration in the Permafrost Region of Qinghai-Xizang Plateau

  • Chengpeng SHANG ,
  • Tonghua WU ,
  • Jimin YAO ,
  • Ren LI ,
  • Guojie HU ,
  • Xiaofan ZHU ,
  • Cheng YANG ,
  • Yongping QIAO
Expand
  • 1. Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,State Key Laboratory of Cryospheric Sciences,Lanzhou 730000,Gansu,China
    2. University of Chinese Academy of Science,Beijing 100049,China
    3. Hebei Normal University,College of Rescouces and Environmental Science,Shijiazhuang 050024,Hebei,China

Received date: 2021-03-31

  Revised date: 2021-06-17

  Online published: 2022-06-20

Cite this article

Chengpeng SHANG , Tonghua WU , Jimin YAO , Ren LI , Guojie HU , Xiaofan ZHU , Cheng YANG , Yongping QIAO . Evaluation of Complementary Relationship Model on Land Surface Actual Evapotranspiration in the Permafrost Region of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022 , 41(3) : 541 -557 . DOI: 10.7522/j.issn.1000-0534.2021.00054

References

null
Bouchet R1963.évapotranspiration réelle et potentielle signification climatique[J].International Association of Hydrological Sciences, 62: 134-142.
null
Brutsaert W2013.Use of pan evaporation to estimate terrestrial evaporation trends: The case of the Tibetan Plateau[J].Water Resources Research49(5): 3054-3058.DOI: 10.1002/wrcr.20247 .
null
Brutsaert W2015.A generalized complementary principle with physical constraints for land-surface evaporation[J].Water Resources Research51(10): 8087-8093.DOI: 10.1002/2015WR017720 .
null
Brutsaert W Cheng L Zhang L2020.Spatial distribution of global landscape evaporation in the early twenty-first century by means of a generalized complementary approach[J].Journal of Hydrometeorology21(2): 287-298.DOI: 10.1175/JHM-D-19-0208.1 .
null
Brutsaert W Li W Takahashi A, et al, 2017.Nonlinear advection-aridity method for landscape evaporation and its application during the growing season in the southern Loess Plateau of the Yellow River basin[J].Water Resources Research53(1): 270-282.DOI: 10.1002/2016WR019472 .
null
Brutsaert W Parlange M B1998.Hydrologic cycle explains the evaporation paradox[J].Nature396(6706): 30.DOI: 10.1038/23845 .
null
Brutsaert W Stricker H1979.An advection-aridity approach to estimate actual regional evapotranspiration[J].Water Resources Research15(2): 443-450.DOI: 10.1029/WR015i002p00443 .
null
Chang Y P Qin D H Ding Y J, et al, 2018.A modified MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China[J].Journal of Hydrology, 561: 16-30.DOI: 10.1016/j.jhydrol.2018.03.054 .
null
Cheng G D Wu T H2007.Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J].Journal of Geophysical Research: Earth Surface112(F2): F02S03.DOI: 10.1029/2006JF000631 .
null
Crago R D Qualls R J2018.Evaluation of the generalized and rescaled complementary evaporation relationships[J].Water Resources Research54(10): 8086-8102.DOI: 10.1029/2018WR023401 .
null
Crago R Szilagyi J Qualls R, et al, 2016.Rescaling the complementary relationship for land surface evaporation[J].Water Resources Research52(11): 8461-8471.DOI: 10.1002/2016WR019753 .
null
Ding Y J Yang J P Wang S X, et al, 2020.A review of the interaction between the cryosphere and atmosphere[J].Sciences in Cold and Arid Regions12(6): 329-342.DOI: 10.3724/SP.J. 1226. 2020.00329 .
null
Duan A M Wu G X Liu Y M, et al, 2012.Weather and climate effects of the Tibetan Plateau[J].Advances in Atmospheric Sciences29(5): 978-992.DOI: 10.1007/s00376-012-1220-y .
null
Gao B Xu X2021.Derivation of an exponential complementary function with physical constraints for land surface evaporation estimation[J].Journal of Hydrology, 593: 125623.DOI: 10.1016/j.jhydrol.2020.125623 .
null
Granger R J Gray D M1989.Evaporation from natural nonsaturated surfaces[J].Journal of Hydrology111(1-4): 21-29.DOI: 10.1016/0022-1694(89)90249-7 .
null
Gu L L Yao J M Hu Z Y, et al, 2015.Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau[J].Atmospheric Research, 153: 553-564.DOI: 10.1016/j.atmosres.2014.10.012 .
null
Gupta H V Kling H Yilmaz K K, et al, 2009.Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling[J].Journal of Hydrology377(1-2): 80-91.DOI: 10.1016/j.jhydrol.2009.08.003 .
null
Han S J Hu H P Tian F Q2012.A nonlinear function approach for the normalized complementary relationship evaporation model[J].Hydrological Processes26(26): 3973-3981.DOI: 10. 1002/hyp.8414 .
null
Han S J Hu H P Yang D W, et al, 2011.A complementary relationship evaporation model referring to the Granger model and the advection-aridity model[J].Hydrological Processes25(13): 2094-2101.DOI: 10.1002/hyp.7960 .
null
Han S J Tian F Q2018.Derivation of a sigmoid generalized complementary function for evaporation with physical constraints[J].Water Resources Research54(7): 5050-5068.DOI: 10. 1029/2017WR021755 .
null
Hu Z Y Wang G X Sun X Y, et al, 2018.Spatial‐temporal patterns of evapotranspiration along an elevation gradient on Mount Gongga, Southwest China[J].Water Resources Research54(6): 4180-4192.DOI: 10.1029/2018WR022645 .
null
Immerzeel W W van Beek L P H Bierkens M F P2010.Climate change will affect the Asian water towers[J].Science328(5984): 1382-1385.DOI: 10.1126/science.1183188 .
null
Jung M Reichstein M Ciais P, et al, 2010.Recent decline in the global land evapotranspiration trend due to limited moisture supply[J].Nature467(7318): 951-954.DOI: 10.1038/nature09396 .
null
Kahler D M Brutsaert W2006.Complementary relationship between daily evaporation in the environment and pan evaporation[J].Water Resources Research42(5): w05413.DOI: 10.1029/2005WR004541 .
null
Kling H Fuchs M Paulin M2012.Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios[J].Journal of Hydrology, 424: 264-277.DOI: 10.1016/j.jhydrol. 2012.01.011 .
null
Kuang X X Jiao J J2016.Review on climate change on the Tibetan Plateau during the last half century[J].Journal of Geophysical Research: Atmospheres121(8): 3979-4007.DOI: 10.1002/2015JD024728 .
null
Liu S M Li X Xu Z W, et al, 2018.The Heihe integrated observatory network: A basin-scale land surface processes observatory in China[J].Vadose Zone Journal17(1): 180072.DOI: 10. 2136/vzj2018.04.0072 .
null
Liu X M Liu C M Brutsaert W2016.Regional evaporation estimates in the eastern monsoon region of China: Assessment of a nonlinear formulation of the complementary principle[J].Water Resources Research52(12): 9511-9521.DOI: 10.1002/2016WR019340 .
null
Liu X M Liu C M Brutsaert W2018.Investigation of a generalized nonlinear form of the complementary principle for evaporation estimation[J].Journal of Geophysical Research: Atmospheres123(8): 3933-3942.DOI: 10.1002/2017JD028035 .
null
Ma N Niu G Y Xia Y L, et al, 2017a.A systematic evaluation of Noah-MP in simulating land-atmosphere energy, water, and carbon exchanges over the continental United States[J].Journal of Geophysical Research: Atmospheres122(22): 12245-12268.DOI: 10.1002/2017JD027597 .
null
Ma N Szilagyi J Zhang Y S, et al, 2019.Complementary‐relationship‐based modeling of terrestrial evapotranspiration across China during 1982-2012: Validations and spatiotemporal analyses[J].Journal of Geophysical Research: Atmospheres124(8): 4326-4351.DOI: 10.1029/2018JD029850 .
null
Ma N Zhang Y S Szilagyi J, et al, 2015.Evaluating the complementary relationship of evapotranspiration in the alpine steppe of the Tibetan Plateau[J].Water Resources Research51(2): 1069-1083.DOI: 10.1002/2014WR015493 .
null
Ma W Q Ma Y M Ishikawa H2014a.Evaluation of the SEBS for upscaling the evapotranspiration based on in-situ observations over the Tibetan Plateau[J].Atmospheric Research, 138: 91-97.DOI: 10.1016/j.atmosres.2013.10.020 .
null
Ma Y M Kang S C Zhu L P, et al, 2008.Roof of the world: Tibetan observation and research platform[J].Bulletin of the American Meteorological Society89(10): 1487-1492.DOI: 10.1175/2008BAMS2545.1 .
null
Ma Y M Ma W Q Zhong L, et al, 2017b.Monitoring and modeling the Tibetan Plateau's climate system and its impact on East Asia[J].Scientific Reports, 7: 44574.DOI: 10.1038/srep44574 .
null
Ma Y M Zhu Z K Zhong L, et al, 2014b.Combining MODIS, AVHRR and in situ data for evapotranspiration estimation over heterogeneous landscape of the Tibetan Plateau[J].Atmospheric Chemistry and Physics14(3): 1507-1515.DOI: 10.5194/acp-14-1507-2014 .
null
Morton F I1983.Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology[J].Journal of Hydrology66(1-4): 1-76.DOI: 10.1016/0022-1694(83)90177-4 .
null
Mu Q Z Heinsch F A Zhao M S, et al, 2007.Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J].Remote Sensing of Environment111(4): 519-536.DOI: 10.1016/j.rse.2007.04.015 .
null
Penman H L1948.Natural evaporation from open water, bare soil and grass[J].Proceedings of the Royal Society of London193(1032): 120-145.DOI: 10.1098/rspa.1948.0037 .
null
Priestley C Taylor R J1972.On the assessment of surface heat flux and evaporation using large scale parameters[J].Monthly Weather Review100(2): 81-92.DOI: 10.1175/1520-0493(1972)1002.3.CO; 2 .
null
Qiu J2008.China: The third pole[J].Nature454(7203): 393-396.DOI: 10.1038/454393a .
null
Shen M G Piao S L Jeong S J, et al, 2015.Evaporative cooling over the Tibetan Plateau induced by vegetation growth[J].Proceedings of the National Academy of Sciences of the United States of America112(30): 9299-9304.DOI: 10.1073/pnas. 1504418112 .
null
Song L L Zhuang Q L Yin Y H, et al, 2017.Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010[J].Environmental Research Letters12(1): 14011.DOI: 10.1088/1748-9326/aa527d .
null
Sun Z Zhao L Hu G J, et al, 2020.Modeling permafrost changes on the Qinghai-Tibetan plateau from 1966 to 2100: A case study from two boreholes along the Qinghai-Tibet engineering corridor[J].Permafrost and Periglacial Processes31(1): 156-171.DOI: 10.1002/ppp.2022 .
null
Szilagyi J2007.On the inherent asymmetric nature of the complementary relationship of evaporation[J].Geophysical Research Letters34(2): L02405.DOI: 10.1029/2006GL028708 .
null
Szilagyi J Crago R Qualls R2017.A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology[J].Journal of Geophysical Research: Atmospheres122(1): 264-278.DOI: 10.1002/2016JD025611 .
null
Szilagyi J Jozsa J2008.New findings about the complementary relationship-based evaporation estimation methods[J].Journal of Hydrology354(1/4): 171-186.DOI: 10.1016/j.jhydrol. 2008. 03.008 .
null
Wang G X Lin S Hu Z Y, et al, 2020a.Improving actual evapotranspiration estimation integrating energy consumption for ice phase change across the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres125(3): e2019JD031799.DOI: 10.1029/2019JD031799 .
null
Wang K C Dickinson R E2012.A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability[J].Reviews of Geophysics50(2): RG2005.DOI: 10.1029/2011RG000373 .
null
Wang L M Tian F Q Han S J, et al, 2020b.Determinants of the asymmetric parameter in the generalized complementary principle of evaporation[J].Water Resources Research56(9): e2019WR026570.DOI: 10.1029/2019WR026570 .
null
Wu G X Duan A M Liu Y M, et al, 2015.Tibetan Plateau climate dynamics: recent research progress and outlook[J].National Science Review2(1): 100-116.DOI: 10.1093/nsr/nwu045 .
null
Yan Y P You Q L Wu F Y, et al, 2020.Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau[J].Climate Dynamics55(9/10): 2405-2419.DOI: 10.1007/s00382-020-05386-0 .
null
Yang M X Wang X J Pang G J, et al, 2019.The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes[J].Earth-Science Reviews, 190: 353-369.DOI: 10.1016/j.earscirev.2018.12.018 .
null
Yang W J Wang Y B Liu X, et al, 2020.Estimating the evaporation in the Fenghuo Mountains permafrost region of the Tibetan Plateau[J].Catena, 194: 104754.DOI: 10.1016/j.catena.2020.104754 .
null
Yao J M Zhao L Gu L L, et al, 2011.The surface energy budget in the permafrost region of the Tibetan Plateau[J].Atmospheric Research102(4): 394-407.DOI: 10.1016/j.atmosres. 2011. 09.001 .
null
Yao T D Thompson L Yang W, et al, 2012.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J].Nature Climate Change2(9): 663-667.DOI: 10.1038/nclimate1580 .
null
Yao T D Xue Y K Chen D L, et al, 2019.Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis[J].Bulletin of the American Meteorological Society100(3): 423-444.DOI: 10.1175/BAMS-D-17-0057.1 .
null
Zhang L Cheng L Brutsaert W2017.Estimation of land surface evaporation using a generalized nonlinear complementary relationship[J].Journal of Geophysical Research: Atmospheres122(3): 1475-1487.DOI: 10.1002/2016JD025936 .
null
Zhang Y Q Kong D D Gan R, et al, 2019.Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017[J].Remote Sensing of Environment, 222: 165-182.DOI: 10.1016/j.rse.2018.12.031 .
null
Zhao L Zou D F Hu G J, et al, 2020.Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) plateau[J].Permafrost and Periglacial Processes31(3): 396-405.DOI: 10.1002/ppp.2056 .
null
Zhu G F Lu L Su Y H, et al, 2014.Energy flux partitioning and evapotranspiration in a sub-alpine spruce forest ecosystem[J].Hydrological Processes28(19): 5093-5104.DOI: 10.1002/hyp.9995 .
null
Zou M J Zhong L Ma Y M, et al, 2018.Comparison of two satellite-based evapotranspiration models of the Nagqu River Basin of the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres123(8): 3961-3975.DOI: 10.1002/2017JD027965 .
null
车涛, 郝晓华, 戴礼云, 等, 2019.青藏高原积雪变化及其影响[J].中国科学院院刊34(11): 1247-1253.
null
杜勤勤, 张明军, 王圣杰, 等, 2018.中国气温变化对全球变暖停滞的响应[J].地理学报73(9): 1748-1764.DOI: 10.11821/dlxb201809011 .
null
郭晨露, 马耀明, 马伟强, 等, 2017.青藏高原珠峰地区戈壁下垫面上实际蒸散发量和蒸发皿蒸发量的关系研究[J].高原气象36(1): 79-86.DOI: 10.7522/j.issn.1000-0534.2016.00020 .
null
王利辉, 何晓波, 丁永建, 2019.青藏高原中部高寒草甸蒸散发特征及其影响因素[J].冰川冻土41(4): 801-808.DOI: 10. 7522/j.issn.1000-0240.2017.0329 .
null
肖瑶, 赵林, 李韧, 等, 2011.青藏高原腹地高原多年冻土区能量收支各分量的季节变化特征[J].冰川冻土33(5): 1033-1039.DOI: http: //ir.casnw.net/handle/362004/8531 .
null
阳坤, 王介民, 2008.一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J].中国科学(D辑: 地球科学)38(2): 243-250.DOI: 10.3321/j.issn: 1006-9267.2008.02.010 .
null
杨成, 吴通华, 姚济敏, 等, 2020.青藏高原表层土壤热通量的时空分布特征[J].高原气象39(4): 706-718.DOI: 10.7522/j.issn.1000-0534.2020.00022 .
null
杨汉波, 杨大文, 雷志栋, 2008.蒸发互补关系的区域变异性[J].清华大学学报(自然科学版), (9): 1413-1416.DOI: 10.3321/j.issn: 1000-0054.2008.09.010 .
null
杨汉波, 杨大文, 雷志栋, 等, 2009.蒸发互补关系在不同时间尺度上的变化规律及其机理[J].中国科学(E辑: 技术科学)39(2): 333-340.DOI: 10.1360/ze2009-39-2-333 .
Outlines

/