null | Bouchet R, 1963.évapotranspiration réelle et potentielle signification climatique[J].International Association of Hydrological Sciences, 62: 134-142. |
null | Brutsaert W, 2013.Use of pan evaporation to estimate terrestrial evaporation trends: The case of the Tibetan Plateau[J]. Water Resources Research, 49(5): 3054-3058.DOI: 10.1002/wrcr.20247 . |
null | Brutsaert W, 2015.A generalized complementary principle with physical constraints for land-surface evaporation[J]. Water Resources Research, 51(10): 8087-8093.DOI: 10.1002/2015WR017720 . |
null | Brutsaert W, Cheng L, Zhang L, 2020.Spatial distribution of global landscape evaporation in the early twenty-first century by means of a generalized complementary approach[J]. Journal of Hydrometeorology, 21(2): 287-298.DOI: 10.1175/JHM-D-19-0208.1 . |
null | Brutsaert W, Li W, Takahashi A, et al, 2017.Nonlinear advection-aridity method for landscape evaporation and its application during the growing season in the southern Loess Plateau of the Yellow River basin[J]. Water Resources Research, 53(1): 270-282.DOI: 10.1002/2016WR019472 . |
null | Brutsaert W, Parlange M B, 1998.Hydrologic cycle explains the evaporation paradox[J]. Nature, 396(6706): 30.DOI: 10.1038/23845 . |
null | Brutsaert W, Stricker H, 1979.An advection-aridity approach to estimate actual regional evapotranspiration[J]. Water Resources Research, 15(2): 443-450.DOI: 10.1029/WR015i002p00443 . |
null | Chang Y P, Qin D H, Ding Y J, et al, 2018.A modified MOD16 algorithm to estimate evapotranspiration over alpine meadow on the Tibetan Plateau, China[J]. Journal of Hydrology, 561: 16-30.DOI: 10.1016/j.jhydrol.2018.03.054 . |
null | Cheng G D, Wu T H, 2007.Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 112(F2): F02S03.DOI: 10.1029/2006JF000631 . |
null | Crago R D, Qualls R J, 2018.Evaluation of the generalized and rescaled complementary evaporation relationships[J]. Water Resources Research, 54(10): 8086-8102.DOI: 10.1029/2018WR023401 . |
null | Crago R, Szilagyi J, Qualls R, et al, 2016.Rescaling the complementary relationship for land surface evaporation[J]. Water Resources Research, 52(11): 8461-8471.DOI: 10.1002/2016WR019753 . |
null | Ding Y J, Yang J P, Wang S X, et al, 2020.A review of the interaction between the cryosphere and atmosphere[J]. Sciences in Cold and Arid Regions, 12(6): 329-342.DOI: 10.3724/SP.J. 1226. 2020.00329 . |
null | Duan A M, Wu G X, Liu Y M, et al, 2012.Weather and climate effects of the Tibetan Plateau[J]. Advances in Atmospheric Sciences, 29(5): 978-992.DOI: 10.1007/s00376-012-1220-y . |
null | Gao B, Xu X, 2021.Derivation of an exponential complementary function with physical constraints for land surface evaporation estimation[J]. Journal of Hydrology, 593: 125623.DOI: 10.1016/j.jhydrol.2020.125623 . |
null | Granger R J, Gray D M, 1989.Evaporation from natural nonsaturated surfaces[J]. Journal of Hydrology, 111(1-4): 21-29.DOI: 10.1016/0022-1694(89)90249-7 . |
null | Gu L L, Yao J M, Hu Z Y, et al, 2015.Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau[J]. Atmospheric Research, 153: 553-564.DOI: 10.1016/j.atmosres.2014.10.012 . |
null | Gupta H V, Kling H, Yilmaz K K, et al, 2009.Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling[J]. Journal of Hydrology, 377(1-2): 80-91.DOI: 10.1016/j.jhydrol.2009.08.003 . |
null | Han S J, Hu H P, Tian F Q, 2012.A nonlinear function approach for the normalized complementary relationship evaporation model[J]. Hydrological Processes, 26(26): 3973-3981.DOI: 10. 1002/hyp.8414 . |
null | Han S J, Hu H P, Yang D W, et al, 2011.A complementary relationship evaporation model referring to the Granger model and the advection-aridity model[J]. Hydrological Processes, 25(13): 2094-2101.DOI: 10.1002/hyp.7960 . |
null | Han S J, Tian F Q, 2018.Derivation of a sigmoid generalized complementary function for evaporation with physical constraints[J]. Water Resources Research, 54(7): 5050-5068.DOI: 10. 1029/2017WR021755 . |
null | Hu Z Y, Wang G X, Sun X Y, et al, 2018.Spatial‐temporal patterns of evapotranspiration along an elevation gradient on Mount Gongga, Southwest China[J]. Water Resources Research, 54(6): 4180-4192.DOI: 10.1029/2018WR022645 . |
null | Immerzeel W W, van Beek L P H, Bierkens M F P, 2010.Climate change will affect the Asian water towers[J]. Science, 328(5984): 1382-1385.DOI: 10.1126/science.1183188 . |
null | Jung M, Reichstein M, Ciais P, et al, 2010.Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 467(7318): 951-954.DOI: 10.1038/nature09396 . |
null | Kahler D M, Brutsaert W, 2006.Complementary relationship between daily evaporation in the environment and pan evaporation[J]. Water Resources Research, 42(5): w05413.DOI: 10.1029/2005WR004541 . |
null | Kling H, Fuchs M, Paulin M, 2012.Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios[J]. Journal of Hydrology, 424: 264-277.DOI: 10.1016/j.jhydrol. 2012.01.011 . |
null | Kuang X X, Jiao J J, 2016.Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research: Atmospheres, 121(8): 3979-4007.DOI: 10.1002/2015JD024728 . |
null | Liu S M, Li X, Xu Z W, et al, 2018.The Heihe integrated observatory network: A basin-scale land surface processes observatory in China[J]. Vadose Zone Journal, 17(1): 180072.DOI: 10. 2136/vzj2018.04.0072 . |
null | Liu X M, Liu C M, Brutsaert W, 2016.Regional evaporation estimates in the eastern monsoon region of China: Assessment of a nonlinear formulation of the complementary principle[J]. Water Resources Research, 52(12): 9511-9521.DOI: 10.1002/2016WR019340 . |
null | Liu X M, Liu C M, Brutsaert W, 2018.Investigation of a generalized nonlinear form of the complementary principle for evaporation estimation[J]. Journal of Geophysical Research: Atmospheres, 123(8): 3933-3942.DOI: 10.1002/2017JD028035 . |
null | Ma N, Niu G Y, Xia Y L, et al, 2017a.A systematic evaluation of Noah-MP in simulating land-atmosphere energy, water, and carbon exchanges over the continental United States[J]. Journal of Geophysical Research: Atmospheres, 122(22): 12245-12268.DOI: 10.1002/2017JD027597 . |
null | Ma N, Szilagyi J, Zhang Y S, et al, 2019.Complementary‐relationship‐based modeling of terrestrial evapotranspiration across China during 1982-2012: Validations and spatiotemporal analyses[J]. Journal of Geophysical Research: Atmospheres, 124(8): 4326-4351.DOI: 10.1029/2018JD029850 . |
null | Ma N, Zhang Y S, Szilagyi J, et al, 2015.Evaluating the complementary relationship of evapotranspiration in the alpine steppe of the Tibetan Plateau[J]. Water Resources Research, 51(2): 1069-1083.DOI: 10.1002/2014WR015493 . |
null | Ma W Q, Ma Y M, Ishikawa H, 2014a.Evaluation of the SEBS for upscaling the evapotranspiration based on in-situ observations over the Tibetan Plateau[J]. Atmospheric Research, 138: 91-97.DOI: 10.1016/j.atmosres.2013.10.020 . |
null | Ma Y M, Kang S C, Zhu L P, et al, 2008.Roof of the world: Tibetan observation and research platform[J]. Bulletin of the American Meteorological Society, 89(10): 1487-1492.DOI: 10.1175/2008BAMS2545.1 . |
null | Ma Y M, Ma W Q, Zhong L, et al, 2017b.Monitoring and modeling the Tibetan Plateau's climate system and its impact on East Asia[J]. Scientific Reports, 7: 44574.DOI: 10.1038/srep44574 . |
null | Ma Y M, Zhu Z K, Zhong L, et al, 2014b.Combining MODIS, AVHRR and in situ data for evapotranspiration estimation over heterogeneous landscape of the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 14(3): 1507-1515.DOI: 10.5194/acp-14-1507-2014 . |
null | Morton F I, 1983.Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology[J]. Journal of Hydrology, 66(1-4): 1-76.DOI: 10.1016/0022-1694(83)90177-4 . |
null | Mu Q Z, Heinsch F A, Zhao M S, et al, 2007.Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 111(4): 519-536.DOI: 10.1016/j.rse.2007.04.015 . |
null | Penman H L, 1948.Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London, 193(1032): 120-145.DOI: 10.1098/rspa.1948.0037 . |
null | Priestley C, Taylor R J, 1972.On the assessment of surface heat flux and evaporation using large scale parameters[J]. Monthly Weather Review, 100(2): 81-92.DOI: 10.1175/1520-0493(1972)1002.3.CO; 2 . |
null | Qiu J, 2008.China: The third pole[J]. Nature, 454(7203): 393-396.DOI: 10.1038/454393a . |
null | Shen M G, Piao S L, Jeong S J, et al, 2015.Evaporative cooling over the Tibetan Plateau induced by vegetation growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(30): 9299-9304.DOI: 10.1073/pnas. 1504418112 . |
null | Song L L, Zhuang Q L, Yin Y H, et al, 2017.Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010[J]. Environmental Research Letters, 12(1): 14011.DOI: 10.1088/1748-9326/aa527d . |
null | Sun Z, Zhao L, Hu G J, et al, 2020.Modeling permafrost changes on the Qinghai-Tibetan plateau from 1966 to 2100: A case study from two boreholes along the Qinghai-Tibet engineering corridor[J]. Permafrost and Periglacial Processes, 31(1): 156-171.DOI: 10.1002/ppp.2022 . |
null | Szilagyi J, 2007.On the inherent asymmetric nature of the complementary relationship of evaporation[J]. Geophysical Research Letters, 34(2): L02405.DOI: 10.1029/2006GL028708 . |
null | Szilagyi J, Crago R, Qualls R, 2017.A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology[J]. Journal of Geophysical Research: Atmospheres, 122(1): 264-278.DOI: 10.1002/2016JD025611 . |
null | Szilagyi J, Jozsa J, 2008.New findings about the complementary relationship-based evaporation estimation methods[J]. Journal of Hydrology, 354(1/4): 171-186.DOI: 10.1016/j.jhydrol. 2008. 03.008 . |
null | Wang G X, Lin S, Hu Z Y, et al, 2020a.Improving actual evapotranspiration estimation integrating energy consumption for ice phase change across the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 125(3): e2019JD031799.DOI: 10.1029/2019JD031799 . |
null | Wang K C, Dickinson R E, 2012.A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability[J]. Reviews of Geophysics, 50(2): RG2005.DOI: 10.1029/2011RG000373 . |
null | Wang L M, Tian F Q, Han S J, et al, 2020b.Determinants of the asymmetric parameter in the generalized complementary principle of evaporation[J]. Water Resources Research, 56(9): e2019WR026570.DOI: 10.1029/2019WR026570 . |
null | Wu G X, Duan A M, Liu Y M, et al, 2015.Tibetan Plateau climate dynamics: recent research progress and outlook[J]. National Science Review, 2(1): 100-116.DOI: 10.1093/nsr/nwu045 . |
null | Yan Y P, You Q L, Wu F Y, et al, 2020.Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau[J]. Climate Dynamics, 55(9/10): 2405-2419.DOI: 10.1007/s00382-020-05386-0 . |
null | Yang M X, Wang X J, Pang G J, et al, 2019.The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes[J]. Earth-Science Reviews, 190: 353-369.DOI: 10.1016/j.earscirev.2018.12.018 . |
null | Yang W J, Wang Y B, Liu X, et al, 2020.Estimating the evaporation in the Fenghuo Mountains permafrost region of the Tibetan Plateau[J]. Catena, 194: 104754.DOI: 10.1016/j.catena.2020.104754 . |
null | Yao J M, Zhao L, Gu L L, et al, 2011.The surface energy budget in the permafrost region of the Tibetan Plateau[J]. Atmospheric Research, 102(4): 394-407.DOI: 10.1016/j.atmosres. 2011. 09.001 . |
null | Yao T D, Thompson L, Yang W, et al, 2012.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2(9): 663-667.DOI: 10.1038/nclimate1580 . |
null | Yao T D, Xue Y K, Chen D L, et al, 2019.Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 100(3): 423-444.DOI: 10.1175/BAMS-D-17-0057.1 . |
null | Zhang L, Cheng L, Brutsaert W, 2017.Estimation of land surface evaporation using a generalized nonlinear complementary relationship[J]. Journal of Geophysical Research: Atmospheres, 122(3): 1475-1487.DOI: 10.1002/2016JD025936 . |
null | Zhang Y Q, Kong D D, Gan R, et al, 2019.Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017[J]. Remote Sensing of Environment, 222: 165-182.DOI: 10.1016/j.rse.2018.12.031 . |
null | Zhao L, Zou D F, Hu G J, et al, 2020.Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) plateau[J]. Permafrost and Periglacial Processes, 31(3): 396-405.DOI: 10.1002/ppp.2056 . |
null | Zhu G F, Lu L, Su Y H, et al, 2014.Energy flux partitioning and evapotranspiration in a sub-alpine spruce forest ecosystem[J]. Hydrological Processes, 28(19): 5093-5104.DOI: 10.1002/hyp.9995 . |
null | Zou M J, Zhong L, Ma Y M, et al, 2018.Comparison of two satellite-based evapotranspiration models of the Nagqu River Basin of the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 123(8): 3961-3975.DOI: 10.1002/2017JD027965 . |
null | 车涛, 郝晓华, 戴礼云, 等, 2019.青藏高原积雪变化及其影响[J].中国科学院院刊, 34(11): 1247-1253. |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |