Spatial Interpolation of Air Temperature Based on Machine Learning

  • Qian HE ,
  • Ming WANG ,
  • Kai LIU
Expand
  • 1. Key Laboratory of Environmental Change and Natural Disaster,Beijing Normal University,Beijing 100875,China
    2. School of National Safety and Emergency Management,Beijing Normal University,Beijing 100875,China
    3. Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China

Received date: 2020-09-25

  Revised date: 2021-01-26

  Online published: 2022-06-20

Cite this article

Qian HE , Ming WANG , Kai LIU . Spatial Interpolation of Air Temperature Based on Machine Learning[J]. Plateau Meteorology, 2022 , 41(3) : 733 -748 . DOI: 10.7522/j.issn.1000-0534.2021.000007

References

null
Aalto J Pirinen P Heikkinen J, et al, 2013.Spatial interpolation of monthly climate data for Finland: Comparing the performance of kriging and generalized additive models[J].Theoretical and Applied Climatology112(1/2): 99-111.DOI: 10.1007/s00704-012-0716-9 .
null
Appelhans T Mwangomo E Hardy D R, et al, 2015.Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt.Kilimanjaro, Tanzania[J].Spatial Statistics, 14: 91-113.DOI: 10.1016/j.spasta.2015.05.008 .
null
Banerjee S Gelfand A E Finley A O, et al, 2008.Gaussian predictive process models for large spatial data sets[J].Journal of the Royal Statistical Society: Series B (Statistical Methodology) R Stat Soc Series B Stat Methodol70(4): 825-848.DOI: 10. 1111/j.1467-9868.2008.00663.x .
null
Batista G Prati R Monard M2004.A study of the behavior of several methods for balancing machine learning training data[J].ACM SIGKDD explorations newsletter SIGKDD explorations6(1): 20-29.DOI: 10.1145/1007730.1007735 .
null
Benavides R Montes F Rubio A, et al, 2007.Geostatistical modelling of air temperature in a mountainous region of Northern Spain[J].Agricultural and Forest Meteorology146(3-4): 173-188.DOI: 10.1016/j.agrformet.2007.05.014 .
null
Breiman, LeoBreiman L2001.Random forests[J].Machine Learning45(1): 5-32.DOI: 10.1023/A: 1010933404324 .
null
Dao D V Adeli H Ly H, et al, 2020.A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo Simulation[J].Sustainability12(3): 830.DOI: 10.3390/su12030830 .
null
Fan J L Yue W J Wu L F, et al, 2018.Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China[J].Agricultural and Forest Meteorology, 263: 225-241.DOI: https: //doi.org/10.1016/j.agrformet. 2018.08.019 .
null
Ghorbani M A Shamshirband S Zare H D, et al, 2017.Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point[J].Soil and Tillage Research, 172: 32-38.DOI: 10.1016/j.still.2017.04.009 .
null
Hodam S Sarkar S Marak A G R, et al, 2017.Spatial interpolation of reference evapotranspiration in India: Comparison of IDW and Kriging Methods[J].Journal of The Institution of Engineers (India): Series A98(4): 511-524.DOI: 10.1007/s40030-017-0241-z .
null
Ji L Senay G B Verdin J P2015.Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products[J].Journal of Hydrometeorology16(6): 2463-2480.DOI: 10.1175/JHM-D-14-0230.1 .
null
Jobst A M Kingston D G Cullen N J, et al, 2017.Combining thin-plate spline interpolation with a lapse rate model to produce daily air temperature estimates in a data-sparse alpine catchment[J].International Journal of Climatology37(1): 214-229.DOI: 10. 1002/joc.4699 .
null
Kilibarda M Hengl T Heuvelink G B M, et al, 2014.Spatio-temporal interpolation of daily temperatures for global land areas at 1?km resolution[J].Journal of Geophysical Research: Atmospheres119(5): 2294-2313.DOI: 10.1002/2013JD020803 .
null
Li J Heap A D2011.A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors[J].Ecological Informatics6(3-4): 228-241.DOI: 10.1016/j.ecoinf.2010.12.003 .
null
Li X Cheng G D Lu L2005.Spatial analysis of air temperature in the Qinghai-Tibet Plateau[J].Arctic, Antarctic, and Alpine Research37(2): 246-252.DOI: 10.1657/1523-0430(2005)037 [0246: SAOATI]2.0.CO; 2.
null
Peng S Z Ding Y X Liu W Z, et al, 2019.1?km monthly temperature and precipitation dataset for China from 1901 to 2017[J].Earth System Science Data11(4): 1931-1946.DOI: 10.5194/essd-11-1931-2019 .
null
Radhika Y Shashi M2009.Atmospheric temperature prediction using support vector machines[J].International Journal of Computer Theory and Engineering: 55-58.DOI: 10.7763/IJCTE.2009.V1.9 .
null
Salcedo-Sanz S Deo R C Carro-Calvo L, et al, 2016.Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms[J].Theoretical and Applied Climatology125(1-2): 13-25.DOI: 10.1007/s00704-015-1480-4 .
null
Scher S Messori G2018.Predicting weather forecast uncertainty with machine learning[J].Quarterly Journal of the Royal Meteorological Society144(717): 2830-2841.DOI: 10.1002/qj.3410 .
null
Seeger M2004.Gaussian processes for machine learning[J].International journal Journal of neural Neural Systems14(2): 69.DOI: 10.1142/S0129065704001899 .
null
Stahl K Moore R D Floyer J A, et al, 2006.Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density[J].Agricultural and Forest Meteorology139(3-4): 224-236.DOI: 10.1016/j.agrformet.2006.07.004 .
null
Valéry A Andréassian V Perrin C2010.Regionalization of precipitation and air temperature over high-altitude catchments-learning from outliers[J].Hydrological Sciences Journal: The Court of Miracles of Hydrology55(6): 928-940.DOI: 10.1080/02626667.2010.504676 .
null
Wang M M He G J Zhang Z M, et al, 2017.Comparison of spatial interpolation and regression analysis models for an estimation of monthly near surface air temperature in China[J].Remote Sensing9(12): 1278.DOI: 10.3390/rs9121278 .
null
Yao R Wang L C Huang X, et al, 2020.Developing a temporally accurate air temperature dataset for Mainland China[J].Science of The Total Environment, 706: 136037.DOI: 10.1016/j.scitotenv.2019.136037 .
null
Yu F Ningbo C Weiping H, et al, 2019.Estimation of soil temperature from meteorological data using different machine learning models[J].Geoderma, 338.DOI: 10.1016/j.geoderma.2018. 11.044 .
null
Zhang Z D Ye L Qin H, et al, 2019.Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression[J].Applied Energy, 247: 270-284.DOI: 10.1016/j.apenergy.2019.04.047 .
null
Zhu X D Zhang Q Xu C Y, et al, 2019.Reconstruction of high spatial resolution surface air temperature data across China: A new geo-intelligent multisource data-based machine learning technique[J].Science of the Total Environment, 665: 300-313.DOI: https: //doi.org/10.1016/j.scitotenv.2019.02.077 .
null
陈淑桂, 李新通, 陈文惠, 等, 2010.气象要素栅格化方法比较——以福建省月平均气温为例[J].亚热带资源与环境学报5(4): 43-51.DOI: 10.3969/j.issn.1673-7105.2010.04.007 .
null
陈炜, 姜大膀, 王晓欣, 2021.CMIP6模式对青藏高原气候的模拟能力评估与预估研究[J].高原气象40(6): 1455-1469.DOI: 10.7522/j.issn.1000-0534.2021.zk003 .
null
陈晓玲, 曾永年, 柳文杰, 2017.亚热带山地丘陵区气象要素空间化方法分析[J].测绘与空间地理信息40(12): 51-56.DOI: 10.3969/j.issn.1672-5867.2017.12.013 .
null
何志昆, 刘光斌, 赵曦晶, 等, 2013.高斯过程回归方法综述[J].控制与决策28(8): 1121-1129+1137.DOI: 10.13195/j.kzyjc. 2013.08.018 .
null
胡义成, 姚作新, 秦荣茂, 等, 2016.基于KBSI模型的新疆平均气温空间插值研究[J].沙漠与绿洲气象10(3): 66-71.DOI: 10.3969/j.issn.1002-0799.2016.03.009 .
null
贾洋, 崔鹏, 2018.高山区多时间尺度Anusplin气温插值精度对比分析[J].高原气象37(3): 757-766.DOI: 10.7522/j.issn. 1000-0534.2017.00072 .
null
李娟, 闫会平, 朱志伟, 2020.中国夏季极端气温与降水事件日数随平均气温变化的定量分析[J].高原气象39(3): 532-542.DOI: 10.7522/j.issn. 1000-0534.2019.00042 .
null
李任君, 高懋芳, 李强, 等, 2019.基于ANUSPLIN的降水空间插值方法研究[J].中国农业信息31(1): 48-57.DOI: 10. 12105/j.issn.1672-0423.20190105 .
null
刘志红, Tim R M Van N, 等, 2008.专用气候数据空间插值软件ANUSPLIN及其应用[J].气象34(2): 92-100.DOI: 10. 7519/j.issn.1000-0526.2008.2.013 .
null
陆福志, 鹿化煜, 2019.秦岭—大巴山高分辨率气温和降水格点数据集的建立及其对区域气候的指示[J].地理学报74(5): 875-888.DOI: 10.11821/dlxb201905003 .
null
潘耀忠, 龚道溢, 邓磊, 等, 2004.基于DEM的中国陆地多年平均温度插值方法[J].地理学报59(3): 366-374.DOI: 10.3321/j.issn: 0375-5444.2004.03.006 .
null
彭彬, 周艳莲, 高苹, 等, 2011.气温插值中不同空间插值方法的适用性分析——以江苏省为例[J].地球信息科学学报13(4): 539-548.DOI: 10.3724/SP.J.1047.2011.00539 .
null
任璇, 郑江华, 穆晨, 等, 2017.不同气象插值方法在新疆草地NPP估算中的可靠性评价[J].草业科学34(3): 439-448.DOI: 10.11829/j.issn.1001-0629.2016-0312 .
null
孙然好, 刘清丽, 陈利顶, 2010.基于地统计学方法的降水空间插值研究[J].水文30(1): 14-17+58.DOI: 10.3969/j.issn. 1000-0852.2010.01.003 .
null
谭剑波, 李爱农, 雷光斌, 2016.青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J].高原气象35(4): 875-886.DOI: 10.7522/j.issn.1000-0534.2015.00037 .
null
王江, 乐章燕, 廖荣伟, 等, 2016.中国区域温度和降水不同空间插值方法精度对比[J].气象与环境学报32(6): 85-93.
null
DOI: 10.3969ssn.1673-503 ×.2016.06.011.2021.00117.
null
徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961—2010年青藏高原气候变化特征分析[J].高原气象38(5): 911-919.DOI: 10.7522/j.issn.1000-0534.2018.00137 .
null
杨耀先, 胡泽勇, 路富全, 等, 2022, 青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117 .
null
姚永慧, 张百平, 2015.青藏高原气温空间分布规律及其生态意义[J].地理研究34(11): 2084-2094.DOI: 10.11821/dlyj201511007 .
null
姚永慧, 张百平, 韩芳, 2011.基于Modis地表温度的横断山区气温估算及其时空规律分析[J].地理学报66(7): 917-927.DOI: 10.11821/xb201107005 .
null
易桂花, 张廷斌, 何奕萱, 等, 2020.四种气温空间插值方法适用性分析[J].成都理工大学学报(自然科学版)47(1): 115-128.DOI: 10.3969/j.issn.1671-9727.2020.01.11 .
null
张慧智, 史学正, 于东升, 等, 2008.中国土壤温度的空间插值方法比较[J].地理研究27(6): 1299-1307.DOI: 10.11821/yj2008060009 .
null
张丽文, 黄敬峰, 王秀珍, 2014.气温遥感估算方法研究综述[J].自然资源学报29(3): 540-552.DOI: 10.11849/zrzyxb. 2014. 03.017 .
null
张晓东, 朱文博, 张静静, 等, 2018.伏牛山地森林植被物候及其对气候变化的响应[J].地理学报73(1): 41-53.DOI: 10. 11821/dlxb201801004 .
null
朱森林, 吴时强, 2018.高斯过程回归模型在河流水温模拟中的应用[J].华中科技大学学报(自然科学版)46(10): 122-126.DOI: 10.13245/j.hust.181021 .
null
祝善友, 张桂欣, 2011.近地表气温遥感反演研究进展[J].地球科学进展26(7): 724-730.DOI: 10.11867/j.issn.1001-8166. 2011.07.0724 .
Outlines

/