null | Aalto J, Pirinen P, Heikkinen J, et al, 2013.Spatial interpolation of monthly climate data for Finland: Comparing the performance of kriging and generalized additive models[J]. Theoretical and Applied Climatology, 112(1/2): 99-111.DOI: 10.1007/s00704-012-0716-9 . |
null | Appelhans T, Mwangomo E, Hardy D R, et al, 2015.Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt.Kilimanjaro, Tanzania[J]. Spatial Statistics, 14: 91-113.DOI: 10.1016/j.spasta.2015.05.008 . |
null | Banerjee S, Gelfand A E, Finley A O, et al, 2008.Gaussian predictive process models for large spatial data sets[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology) R Stat Soc Series B Stat Methodol, 70(4): 825-848.DOI: 10. 1111/j.1467-9868.2008.00663.x . |
null | Batista G, Prati R, Monard M, 2004.A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD explorations newsletter SIGKDD explorations, 6(1): 20-29.DOI: 10.1145/1007730.1007735 . |
null | Benavides R, Montes F, Rubio A, et al, 2007.Geostatistical modelling of air temperature in a mountainous region of Northern Spain[J]. Agricultural and Forest Meteorology, 146(3-4): 173-188.DOI: 10.1016/j.agrformet.2007.05.014 . |
null | |
null | Dao D V, Adeli H, Ly H, et al, 2020.A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo Simulation[J]. Sustainability, 12(3): 830.DOI: 10.3390/su12030830 . |
null | Fan J L, Yue W J, Wu L F, et al, 2018.Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China[J]. Agricultural and Forest Meteorology, 263: 225-241.DOI: https: //doi.org/10.1016/j.agrformet. 2018.08.019 . |
null | Ghorbani M A, Shamshirband S, Zare H D, et al, 2017.Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point[J]. Soil and Tillage Research, 172: 32-38.DOI: 10.1016/j.still.2017.04.009 . |
null | Hodam S, Sarkar S, Marak A G R, et al, 2017.Spatial interpolation of reference evapotranspiration in India: Comparison of IDW and Kriging Methods[J]. Journal of The Institution of Engineers (India): Series A, 98(4): 511-524.DOI: 10.1007/s40030-017-0241-z . |
null | Ji L, Senay G B, Verdin J P, 2015.Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products[J]. Journal of Hydrometeorology, 16(6): 2463-2480.DOI: 10.1175/JHM-D-14-0230.1 . |
null | Jobst A M, Kingston D G, Cullen N J, et al, 2017.Combining thin-plate spline interpolation with a lapse rate model to produce daily air temperature estimates in a data-sparse alpine catchment[J]. International Journal of Climatology, 37(1): 214-229.DOI: 10. 1002/joc.4699 . |
null | Kilibarda M, Hengl T, Heuvelink G B M, et al, 2014.Spatio-temporal interpolation of daily temperatures for global land areas at 1?km resolution[J]. Journal of Geophysical Research: Atmospheres, 119(5): 2294-2313.DOI: 10.1002/2013JD020803 . |
null | Li J, Heap A D, 2011.A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors[J]. Ecological Informatics, 6(3-4): 228-241.DOI: 10.1016/j.ecoinf.2010.12.003 . |
null | Li X, Cheng G D, Lu L, 2005.Spatial analysis of air temperature in the Qinghai-Tibet Plateau[J]. Arctic, Antarctic, and Alpine Research, 37(2): 246-252.DOI: 10.1657/1523-0430(2005)037 [0246: SAOATI]2.0.CO; 2. |
null | Peng S Z, Ding Y X, Liu W Z, et al, 2019.1?km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 11(4): 1931-1946.DOI: 10.5194/essd-11-1931-2019 . |
null | Radhika Y, Shashi M, 2009.Atmospheric temperature prediction using support vector machines[J]. International Journal of Computer Theory and Engineering: 55-58.DOI: 10.7763/IJCTE.2009.V1.9 . |
null | Salcedo-Sanz S, Deo R C, Carro-Calvo L, et al, 2016.Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms[J]. Theoretical and Applied Climatology, 125(1-2): 13-25.DOI: 10.1007/s00704-015-1480-4 . |
null | Scher S, Messori G, 2018.Predicting weather forecast uncertainty with machine learning[J]. Quarterly Journal of the Royal Meteorological Society, 144(717): 2830-2841.DOI: 10.1002/qj.3410 . |
null | Seeger M, 2004.Gaussian processes for machine learning[J]. International journal Journal of neural Neural Systems, 14(2): 69.DOI: 10.1142/S0129065704001899 . |
null | Stahl K, Moore R D, Floyer J A, et al, 2006.Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density[J]. Agricultural and Forest Meteorology, 139(3-4): 224-236.DOI: 10.1016/j.agrformet.2006.07.004 . |
null | Valéry A, Andréassian V, Perrin C, 2010.Regionalization of precipitation and air temperature over high-altitude catchments-learning from outliers[J]. Hydrological Sciences Journal: The Court of Miracles of Hydrology, 55(6): 928-940.DOI: 10.1080/02626667.2010.504676 . |
null | Wang M M, He G J, Zhang Z M, et al, 2017.Comparison of spatial interpolation and regression analysis models for an estimation of monthly near surface air temperature in China[J]. Remote Sensing, 9(12): 1278.DOI: 10.3390/rs9121278 . |
null | Yao R, Wang L C, Huang X, et al, 2020.Developing a temporally accurate air temperature dataset for Mainland China[J]. Science of The Total Environment, 706: 136037.DOI: 10.1016/j.scitotenv.2019.136037 . |
null | Yu F, Ningbo C, Weiping H, et al, 2019.Estimation of soil temperature from meteorological data using different machine learning models[J]. Geoderma, 338.DOI: 10.1016/j.geoderma.2018. 11.044 . |
null | Zhang Z D, Ye L, Qin H, et al, 2019.Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression[J]. Applied Energy, 247: 270-284.DOI: 10.1016/j.apenergy.2019.04.047 . |
null | Zhu X D, Zhang Q, Xu C Y, et al, 2019.Reconstruction of high spatial resolution surface air temperature data across China: A new geo-intelligent multisource data-based machine learning technique[J]. Science of the Total Environment, 665: 300-313.DOI: https: //doi.org/10.1016/j.scitotenv.2019.02.077 . |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 王江, 乐章燕, 廖荣伟, 等, 2016.中国区域温度和降水不同空间插值方法精度对比[J].气象与环境学报, 32(6): 85-93. |
null | DOI: 10.3969ssn.1673-503 ×.2016.06.011.2021.00117. |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |