Numerical Study on Transport Characteristics of PM2.5 under Different Pollution Conditions in Beijing during Wintertime

  • Jialin LI ,
  • Meigen ZHANG
Expand
  • 1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
    2. Center for Excellence in Regional Atmospheric Environment,Institute of Urban Environment,Chinese Academy of Sciences,Xiamen 361021,Fujian,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2020-07-20

  Revised date: 2021-01-14

  Online published: 2022-06-20

Cite this article

Jialin LI , Meigen ZHANG . Numerical Study on Transport Characteristics of PM2.5 under Different Pollution Conditions in Beijing during Wintertime[J]. Plateau Meteorology, 2022 , 41(3) : 829 -838 . DOI: 10.7522/j.issn.1000-0534.2021.00004

References

null
Benkovitz C M Scholtz M T Pacyna J, et al, 1996.Global gridded inventories of anthropogenic emissions of sulfur and nitrogen[J].Journal of Geophysical Research-Atmospheres, 101: 29239-29253.DOI: 10.1029/96JD00126 .
null
Boylan J W Russell A G2006.PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models[J].Atmospheric Environment, 40: 4946-4959.DOI: 10.1016/j.atmosenv.2005.09.087 .
null
Burr M J Zhang Y2011.Source apportionment of fine particulate matter over the Eastern U.S.Part I: Source sensitivity simulations using CMAQ with the Brute Force method[J].Atmospheric Pollution Research2(3): 300-317.DOI: 10.5094/APR. 2011.036 .
null
Chen D S Liu X X Lang J L, et al, 2017.Estimating the contribution of regional transport to PM2.5 air pollution in a rural area on the North China Plain [J].Science of The Total Environment, 583: 280-291.DOI: 10.1016/j.scitotenv.2017.01.066 .
null
Chen Z J Cui L L Cui X X, et al, 2019.The association between high ambient air pollution exposure and respiratory health of young children: A cross sectional study Jinan, China [J].Science of the Total Environment, 656: 740-749.DOI: 10.1016/j.scitotenv.2018.11.368 .
null
Emmons L K Walters S Hess P G, et al, 2010.Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4)[J].Geoscientific Model Development, 3: 43-67.DOI: 10.5194/gmd-3-43-2010 .
null
Gao M Carmichael G R Wang Y, et al, 2016.Modeling study of the 2010 regional haze event in the North China Plain[J].Atmospheric Chemistry Physics, 16: 1673-1691.DOI: 10.5194/acp-16-1673-2016 .
null
Gong S L2003.A parameterization of sea-salt aerosol source function for sub-and super-micron particles[J].Global Biogeochemical Cycles17(4).DOI: 10.1029/2003gb002079 .
null
Guenther A B Jiang X Heald C L, et al, 2012.The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions[J].Geoscientific Model Development, 5: 1471-1492.DOI: 10.5194/gmd-5-1471-2012 .
null
Han Z W Ueda H Matsuda K, et al, 2004.Model study on particle size segregation and deposition during Asian dust events in March 2002[J].Journal of Geophysical Research-Atmospheres109(D19): D19205.DOI: 10.1029/2004jd004920 .
null
Juda-Rezler K Reizer M Huszar P, et al, 2012.Modelling the effects of climate change on air quality over Central and Eastern Europe: Concept, evaluation and projections[J].Climate Research, 53: 179-203.DOI: 10.3354/cr01072 .
null
Koo B Dunker A M Yarwood G2007.Implementing the decoupled direct method for sensitivity analysis in a particulate matter air quality model[J].Environmental Science&Technology41(8): 2847-2854.DOI: 10.1021/es0619962 .
null
Kwok R H F Napelenok S L Baker K R2013.Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model[J].Atmospheric Environment, 80: 398-407.DOI: 10.1016/j.atmosenv.2013.08.017 .
null
Li M Zhang Q Kurokawa J, et al, 2017.MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP[J].Atmospheric Chemistry Physics, 17: 935-963.DOI: 10.5194/acp-17-935-2017 .
null
Li R Mei X Wei L F, et al, 2019.Study on the contribution of transport to PM2.5 in typical regions of China using the regional air quality model RAMS-CMAQ[J].Atmospheric Environment, 214.DOI: 10.1016/j.atmosenv.2019.116856 .
null
Ma Z W Hu X F Sayer A M, et al, 2016.Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004-2013[J].Environ Health Perspect, 124(2): 184-192.DOI: 10.1289/ehp. 1409481 .
null
Miller M S Friedlander S K Hidy G M1972.A chemical element balance for the Pasadena aerosol[J].Journal of Colloid and Interface Science, 39: 165-176.DOI: 10.1016/0021-9797(72)90152-X .
null
Paatero P1997.Least squares formulation of robust non-negative factor analysis[J].Chemometrics and Intelligent Laboratory Systems, 37: 23-35.DOI: 10.1016/S0169-7439(96)00044-5 .
null
van der Werf G R Randerson J T Giglio L, et al, 2017.Global fire emissions estimates during 1997-2016[J].Earth System Science Data, 9: 697-720.DOI: 10.5194/essd-9-697-2017 .
null
Wagstrom K M Pandis S N Yarwood G, et al, 2008.Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional chemical transport model[J].Atmospheric Environment42(22): 5650-5659.DOI: 10.1016/j.atmosenv.2008.03.012 .
null
Wang P F Guo H Hu J L, et al, 2019.Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China[J].Science of the Total Environment, 662: 297-306.DOI: 10. 1016/j.scitotenv.2019.01.227 .
null
Wang Z S Chien C J Tonnesen G S2009.Development of a tagged species source apportionment algorithm to characterize three-dimensional transport and transformation of precursors and secondary pollutants[J]. Journal of Geophysical Research114(D21): D21206.DOI: 10.1029/2008JD010846 .
null
Zhang X Y Wang Y Q Niu T, et al, 2012.Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols[J].Atmospheric Chemistry Physics12 (2): 779-799.DOI: 10.5194/acp-12-779-2012 .
null
阚海东, 陈秉衡, 2002.我国大气颗粒物暴露与人群健康效应的关系[J].环境与健康杂志19(6): 422-424.DOI: 10.16241/j.cnki.1001-5914.2002.06.003 .
null
李欢, 唐贵谦, 张军科, 等, 2020.2017~2018年北京大气PM2.5中水溶性无机离子特征[J].环境科学41(10): 4364-4373.DOI: 10.13227/j.hjkx.202003303 .
null
刘磊, 胡非, 2019.基于多属性决策的区域大气复合污染多目标优化控制方法研究[J].气候与环境研究24(4): 407-416.DOI: 10.3878/j.issn.1006-9585.2018.18034 .
null
李璇, 聂滕, 齐珺, 等, 2015.2013年1月北京市PM2.5区域来源解析[J].环境科学36(4): 1148-1153.DOI: 10.13227/j.hjkx. 2015.04.002 .
null
吴育杰, 2019.基于WRF-CMAQ/ISAM模型的京津冀及周边地区PM2.5来源解析研究[D].杭州: 浙江大学, 19-35.
null
王晓琦, 郎建垒, 程水源, 等, 2016.京津冀及周边地区PM2.5传输规律研究[J].中国环境科学36(11): 3211-3217.DOI: 10.3969/j.issn.1000-6923.2016.11.002 .
null
谢元博, 陈娟, 李巍, 2014.雾霾重污染期间北京居民对高浓度PM2.5持续暴露的健康风险及其损害价值评估[J].环境科学35(1): 1-8.DOI: 10.13227/j.hjkx.2014.01.057 .
null
王燕丽, 薛文博, 雷宇, 等, 2017.京津冀区域PM2.5污染相互输送特征[J].环境科学38(12): 4897-4904.DOI: 10.13227/j.hjkx.201703282 .
null
王跃思, 张军科, 王莉莉, 等, 2014.京津冀区域大气霾污染研究意义、 现状及展望[J].地球科学进展29(3): 388-396.DOI: 10.11867/j.issn.1001-8166.2014.03.038 .
null
尹承美, 何建军, 于丽娟, 等, 2019.多尺度气象条件对济南PM2.5污染的影响[J].高原气象38(5): 1120-1128.DOI: 10.7522 /j.issn.1000-0534.2019.00018 .
null
朱彤, 尚静, 赵德峰, 2010.大气复合污染及灰霾形成中非均相化学过程的作用[J].中国科学(化学), 40: 1731-1740.DOI: 10. 1360/zb2010-40-12-1731 .
null
张远航, 2008.大气复合污染是灰霾内因[J].环境, 7: 32-33.
null
张延君, 郑玫, 蔡靖, 等, 2015.PM2.5源解析方法的比较与评述[J].科学通报60(2): 109-121.DOI: 10.1360/n972014-00975 .
Outlines

/