null | Aparício S, Carvalhais N, Seixas J, 2015.Climate change impacts on the vegetation carbon cycle of the Iberian Peninsula—Intercomparison of CMIP5 results[J]. Journal of Geophysical Research Biogeosciences, 120(4): 641-660.DOI: 10.1002/2014JG002755 . |
null | Arora V K, Boer G J, 2005.A parameterization of leaf phenology for the terrestrial ecosystem component of climate models[J]. Global Change Biology, 11(1): 39-59.DOI: 10.1111/j.1365-2486. 2004.00890.x . |
null | Buffam I, Turner M G, Desai A R, et al, 2011.Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district[J]. Global Change Biology, 17(2): 1193-1211.DOI: 10.1111/j.1365-2486.2010.02313.x . |
null | Chen W L, Jiang Z H, Li L, 2015.Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs[J]. Journal of Climate, 24(17): 4741-4756.DOI: 10.1175/2011JCLI4102.1 . |
null | Georges K, Daniel F, David A C, et al, 2016.Plant functional traits have globally consistent effects on competition[J]. Nature, 529(7585): 204-207.DOI: 10.1038/nature16476 . |
null | |
null | Iversen C M, Sloan V L, Sullivan P F, et al, 2015.The unseen iceberg: plant roots in arctic tundra[J]. New Phytol, 205(1): 34-58.DOI: 10.1111/nph.13003 . |
null | Jiang L F, Yan Y E, Hararuk O, et al, 2015.Scale-dependent performance of CMIP5 Earth System Models in simulating terrestrial vegetation carbon[J]. Journal of Climate, 28(13): 5217-5232.DOI: 10.1175/Jcli-D-14-00270.1 . |
null | Li W P, Zhang Y W, Shi X L, et al, 2019.Development of land surface Model BCC_AVIM2.0 and its preliminary performance in LS3MIP/CMIP6[J]. Journal of Meteorological Research, 33(5): 57-75.DOI: 10.1007/s13351-019-9016-y . |
null | Mokany K, Raison R J, Prokushkin A S, 2006.Critical analysis of root: Shoot ratios in terrestrial biomes[J]. Global Change Biology, 12(1): 84-96.DOI: 10.1111/j.1365-2486.2005.001043.x . |
null | Nie X Q, Dong W, Yang L C, et al, 2020.Belowground biomass of alpine shrublands across the northeast Tibetan Plateau[J]. Ecology and Evolution, 10(12): 5315-5322.DOI: 10.1002/ece3.6275 . |
null | Pierce D W, Barnett T P, Santer B D, et al, 2009.Selecting global climate models for regional climate change studies[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(21): 8441-8446.DOI: 10.1073/pnas.0900094106 . |
null | Schuenemann K C, Cassano J J, 2009.Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 1.Evaluation of late 20th century simulations from IPCC models[J]. Journal of Geophysical Research-Atmospheres, 114(D20): D20113.DOI: 10.1029/2009jd011705 . |
null | Scurlock J M O, Johnson K, Olson R J, 2002.Estimating net primary productivity from grassland biomass dynamics measurements[J]. Global Change Biology, 8(8): 736-753.DOI: 10.1007/s11136-006-9005-3 . |
null | Song X, Hoffman F M, Iversen C M, et al, 2017.Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data[J]. Journal of Geophysical Research: Biogeosciences, 122(9): 2282-2297.DOI: 10.1002/2017jg003914 . |
null | Taylor K E, Stouffer R J, Meehl G A, 2012.An overview of Cmip5 and the experiment design[J]. Bulletin of the American Meteorological Society, 93(4): 485-498.DOI: 10.1175/Bams-D-11-00094.1 . |
null | Trumbore S E, Gaudinski J B, 2003.The secret lives of roots[J]. Science, 302(5649): 1344-1345.DOI: 10.1126/science.1091841 . |
null | Yang Y H, Fang J Y, Ji C J, et al, 2009.Above and belowground biomass allocation in Tibetan grasslands[J]. Journal of Vegetation Science, 20(1): 177-184.DOI: 10.1111/j.1654-1103.2009. 05566.x . |
null | Zhang W, Wu X K, Liu G X, et al, 2014.Tag-encoded pyrosequencing analysis of bacterial diversity within different alpine grassland ecosystems of the Qinghai-Tibet Plateau, China[J]. Environmental Earth Sciences, 72(3): 779-786.DOI: 10.1007/s12665-013-3001-z . |
null | Zheng D L, John R, Chen J Q, et al, 2004.Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA[J]. Remote Sensing of Environment, 93(3): 402-411.DOI: 10.1016/j.rse.2004.08.008 . |
null | |
null | 冯婧, 2012.多全球模式对中国区域气候的模拟评估和预估[D].南京: 南京信息工程大学: 1- 81. |
null | 杭月荷, 2013.CMIP5多模式对中国极端降水的模拟评估及未来情景预估[D].南京: 南京信息工程大学: 1- 55. |
null | 黄德青, 于兰, 张耀生, 等, 2011.祁连山北坡天然草地地下生物量及其与环境因子的关系[J].草业学报, 20(5): 1-10. |
null | |
null | 赖云云, 冯建孟, 袁媛媛, 2018.气候变化对尼泊尔地区热带植物海拔分布格局的影响[J].信阳师范学院学报, 31(2): 233-239. |
null | 李英年, 1998.高寒草甸植物地下生物量与气象条件的关系及周转值分析[J].中国农业气象, 19(1): 3-5. |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 周华坤, 周立, 赵新全, 等, 2002.金露梅灌丛地下生物量形成规律的研究[J].草业学报, 11(2): 59-65. |
null | 周兴民, 2001.中国嵩草草甸[M].北京: 科学出版社. |