Evaluation of CMIP Earth System Models on Root Biomass Simulation

  • Ke ZHOU ,
  • Youqi SU ,
  • Yu ZHANG ,
  • Minhong SONG ,
  • Tongwen WU ,
  • Linfeng YANG ,
  • Xizhao WANG ,
  • Tianya LI
Expand
  • 1. School of Atmospheric Sciences,Chengdu University of Information Technology / Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,Chengdu 610225,Sichuan,China
    2. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China
    4. National Climate Center,China Meteorological Administration,Beijing 100081,China

Received date: 2021-01-15

  Revised date: 2021-04-21

  Online published: 2022-09-08

Cite this article

Ke ZHOU , Youqi SU , Yu ZHANG , Minhong SONG , Tongwen WU , Linfeng YANG , Xizhao WANG , Tianya LI . Evaluation of CMIP Earth System Models on Root Biomass Simulation[J]. Plateau Meteorology, 2022 , 41(4) : 945 -952 . DOI: 10.7522/j.issn.1000-0534.2021.00032

References

null
Aparício S Carvalhais N Seixas J2015.Climate change impacts on the vegetation carbon cycle of the Iberian Peninsula—Intercomparison of CMIP5 results[J].Journal of Geophysical Research Biogeosciences120(4): 641-660.DOI: 10.1002/2014JG002755 .
null
Arora V K Boer G J2005.A parameterization of leaf phenology for the terrestrial ecosystem component of climate models[J].Global Change Biology11(1): 39-59.DOI: 10.1111/j.1365-2486. 2004.00890.x .
null
Buffam I Turner M G Desai A R, et al, 2011.Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district[J].Global Change Biology17(2): 1193-1211.DOI: 10.1111/j.1365-2486.2010.02313.x .
null
Chen W L Jiang Z H Li L2015.Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs[J].Journal of Climate24(17): 4741-4756.DOI: 10.1175/2011JCLI4102.1 .
null
Georges K Daniel F David A C, et al, 2016.Plant functional traits have globally consistent effects on competition[J].Nature529(7585): 204-207.DOI: 10.1038/nature16476 .
null
Gill R A Jackson R B2000.Global patterns of root turnover for terrestrial ecosystems[J].New Phytol147(1): 13-31.DOI: 10. 1046/j.1469-8137.2000.00681.x
null
Iversen C M Sloan V L Sullivan P F, et al, 2015.The unseen iceberg: plant roots in arctic tundra[J].New Phytol205(1): 34-58.DOI: 10.1111/nph.13003 .
null
Jiang L F Yan Y E Hararuk O, et al, 2015.Scale-dependent performance of CMIP5 Earth System Models in simulating terrestrial vegetation carbon[J].Journal of Climate28(13): 5217-5232.DOI: 10.1175/Jcli-D-14-00270.1 .
null
Li W P Zhang Y W Shi X L, et al, 2019.Development of land surface Model BCC_AVIM2.0 and its preliminary performance in LS3MIP/CMIP6[J].Journal of Meteorological Research33(5): 57-75.DOI: 10.1007/s13351-019-9016-y .
null
Mokany K Raison R J Prokushkin A S2006.Critical analysis of root: Shoot ratios in terrestrial biomes[J].Global Change Biology12(1): 84-96.DOI: 10.1111/j.1365-2486.2005.001043.x .
null
Nie X Q Dong W Yang L C, et al, 2020.Belowground biomass of alpine shrublands across the northeast Tibetan Plateau[J].Ecology and Evolution10(12): 5315-5322.DOI: 10.1002/ece3.6275 .
null
Pierce D W Barnett T P Santer B D, et al, 2009.Selecting global climate models for regional climate change studies[J].Proceedings of the National Academy of Sciences of the United States of America106(21): 8441-8446.DOI: 10.1073/pnas.0900094106 .
null
Schuenemann K C Cassano J J2009.Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 1.Evaluation of late 20th century simulations from IPCC models[J].Journal of Geophysical Research-Atmospheres114(D20): D20113.DOI: 10.1029/2009jd011705 .
null
Scurlock J M O Johnson K Olson R J2002.Estimating net primary productivity from grassland biomass dynamics measurements[J].Global Change Biology8(8): 736-753.DOI: 10.1007/s11136-006-9005-3 .
null
Song X Hoffman F M Iversen C M, et al, 2017.Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data[J].Journal of Geophysical Research: Biogeosciences122(9): 2282-2297.DOI: 10.1002/2017jg003914 .
null
Taylor K E Stouffer R J Meehl G A2012.An overview of Cmip5 and the experiment design[J].Bulletin of the American Meteorological Society93(4): 485-498.DOI: 10.1175/Bams-D-11-00094.1 .
null
Trumbore S E Gaudinski J B2003.The secret lives of roots[J].Science302(5649): 1344-1345.DOI: 10.1126/science.1091841 .
null
Yang Y H Fang J Y Ji C J, et al, 2009.Above and belowground biomass allocation in Tibetan grasslands[J].Journal of Vegetation Science20(1): 177-184.DOI: 10.1111/j.1654-1103.2009. 05566.x .
null
Zhang W Wu X K Liu G X, et al, 2014.Tag-encoded pyrosequencing analysis of bacterial diversity within different alpine grassland ecosystems of the Qinghai-Tibet Plateau, China[J].Environmental Earth Sciences72(3): 779-786.DOI: 10.1007/s12665-013-3001-z .
null
Zheng D L John R Chen J Q, et al, 2004.Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA[J].Remote Sensing of Environment93(3): 402-411.DOI: 10.1016/j.rse.2004.08.008 .
null
柴曦, 梁存柱, 梁茂伟, 等, 2014.内蒙古草甸草原与典型草原地下生物量与生产力季节动态及其碳库潜力[J].生态学报34(19): 5530-5540.DOI: 10.5846/stxb201301190118 .
null
冯婧, 2012.多全球模式对中国区域气候的模拟评估和预估[D].南京: 南京信息工程大学: 1- 81.
null
杭月荷, 2013.CMIP5多模式对中国极端降水的模拟评估及未来情景预估[D].南京: 南京信息工程大学: 1- 55.
null
黄德青, 于兰, 张耀生, 等, 2011.祁连山北坡天然草地地下生物量及其与环境因子的关系[J].草业学报20(5): 1-10.
null
黄玫, 季劲钧, 曹明奎, 等, 2006.中国区域植被地上与地下生物量模拟[J].生态学报26(12): 4156-4163.DOI: 10.3321/j.issn: 1000-0933.2006.12.031 .
null
赖云云, 冯建孟, 袁媛媛, 2018.气候变化对尼泊尔地区热带植物海拔分布格局的影响[J].信阳师范学院学报31(2): 233-239.
null
李英年, 1998.高寒草甸植物地下生物量与气象条件的关系及周转值分析[J].中国农业气象19(1): 3-5.
null
刘立, 胡飞龙, 闫妍, 等, 2020.高寒草原不同植物群落地上-地下生物量碳分布格局[J].生态学杂志39(5): 1409-1416.DOI: 10.13292/j.1000-4890.202005.011 .
null
马千惠, 齐木荣, 杨清华, 等, 2020.鄂陵湖周边草地生长期地表能量平衡观测分析[J].高原气象39(6): 1207-1218.DOI: 10. 7522/j.issn.1000-0534.2019.00132 .
null
马星星, 鄢燕, 鲁旭阳, 等, 2016.藏北高寒草地地下生物量特征及其与土壤水分的关系[J].生态环境学报25(2): 189-195.DOI: 10.16258/j.cnki.1674-5906.2016.02.002 .
null
朴世龙, 方精云, 贺金生, 等, 2004.中国草地植被生物量及其空间分布格局[J].植物生态学报28(4): 491-498.DOI: 10. 17521/cjpe.2004.0067 .
null
辛晓歌, 吴统文, 张洁, 2012.BCC气候系统模式开展的CMIP5试验介绍[J].气候变化研究进展8(5): 69-73.DOI: 10.3969/j.issn.1673-1719.2012.05.010 .
null
杨秀静, 黄玫, 王军邦, 等, 2013.青藏高原草地地下生物量与环境因子的关系[J].生态学报33(7): 2032-2042.DOI: 10.5846/stxb201112281997 .
null
张一帆, 缪昕, 郭维栋, 2020.考虑碳氮水过程的动态根系方案在陆面模式SSiB4中的应用及效果评估[J].高原气象39(3): 511-522.DOI: 10.7522/ j.issn.1000-0534.2020.00005 .
null
赵倩倩, 张京朋, 赵天保, 等, 2021.2000年以来中国区域植被变化及其对气候变化的响应[J].高原气象40(2): 292-301.DOI: 10.7522/j.issn.1000-0534.2020.00025 .
null
周华坤, 周立, 赵新全, 等, 2002.金露梅灌丛地下生物量形成规律的研究[J].草业学报11(2): 59-65.
null
周兴民, 2001.中国嵩草草甸[M].北京: 科学出版社.
Outlines

/