Changes of Surface Wind Speed over Qinghai-Xizang Plateau from 1961 to 2020 and Evaluation of the Dynamical Downscaling Simulations

  • Jia WU ,
  • Jie WU ,
  • Yuping YAN
Expand
  • 1. National Climate Center,Beijing 100081,China
    2. School of Geography and Environmental Engineering,Gannan Normal University,Ganzhou 341000,JiangXi,China

Received date: 2022-01-28

  Revised date: 2022-06-22

  Online published: 2022-09-08

Cite this article

Jia WU , Jie WU , Yuping YAN . Changes of Surface Wind Speed over Qinghai-Xizang Plateau from 1961 to 2020 and Evaluation of the Dynamical Downscaling Simulations[J]. Plateau Meteorology, 2022 , 41(4) : 963 -976 . DOI: 10.7522/j.issn.1000-0534.2022.00065

References

null
Chen L Li D L Pryor S C2013.Wind speed trends over China: quantifying the magnitude and assessing causality[J].International Journal of Climatology33(11): 2579-2590.
null
Chen L Pryor SC Li D L2012.Assessing the performance of Intergovernmental Panel on Climate Change AR5 climate models in simulating and projecting wind speeds over China[J].Journal of Geophysical Research, 117: D24102.DOI: 10.1029/2012JD017533 .
null
Chen Z Li W Guo J, et al, 2020.Projection of wind energy potential over Northern China using a regional climate model[J].Sustainability12(10): 3979.
null
Fu C B Yu J Zhang Y, et al, 2011.Temporal variation of wind speed in China for 1961-2007[J].Theoretical and Applied Climatology104(3-4): 313-324.
null
Gao X J Shi Y Han Z Y, et al, 2017.Performance of RegCM4 over major river basins in China[J].Advances in Atmospheric Sciences34(4): 441-455.DOI: 10.1007/s00376-016-6179-7 .
null
Gao X J Wang M L Giorgi F2013.Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0[J].Atmospheric and Oceanic Science Letters6(5): 381-386.
null
Giorgi F Coppola E Solmon F, et al, 2012.RegCM4: model description and illustrative basic performance over selected CORDEX domains[J].Climate Research52(1): 7-29.
null
Gleckler P J Taylor K E Doutriaux C2008.Performance metrics for climate models[J].Journal of Geophysical Research, 113: D06104.
null
Guo H Xu M Hu Q2011.Changes in near-surface wind speed in China: 1969-2005[J].International Journal of Climatology31(3): 349-358.
null
Gutowski J William J Giorgi F, et al, 2016.WCRP COordinated regional downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6[J].Geoscientific Model Development9(11): 4087-4095.
null
Gutowski W J Ullrich P A Hall A, et al, 2020.The ongoing need for high-resolution regional climate models: process understanding and stakeholder information[J].Bulletin of the American Meteorological Society101(5): E664-E683.
null
Han Z Y Shi Y Wu J, et al, 2019.Combined dynamical and statistical downscaling for high-resolution projections of multiple climate variables in the Beijinge-Tianjine-Hebei Region of China[J].Journal of Applied Meteorology and Climatology, 58: 2387-2403.
null
He Y McFarlane N A Monahan A H2012.The influence of boundary layer processes on the diurnal variation of the climatological near-surface wind speed probability distribution over land[J].Journal of Climate25(18): 6441-6458.
null
He Y Monahan A H Jones C G, et al, 2010.Probability distributions of land surface wind speeds over North America[J].Journal of Geophysical Research115(D4): D04103.
null
Hersbach H Bell B Berrisford P, et al, 2020.The ERA5 global reanalysis[J].Quarterly Journal of the Royal Meteorological Society, 146: 1999-2049.
null
Holtslag A Bruijn E Pan H L1990.A high resolution air mass transformation model for short-range weather forecasting[J].Monthly Weather Review, 118: 1561-1575.
null
Hueging H Rabea H Kai B, et al, 2013.Regional changes in wind energy potential over Europe using regional climate model ensemble projections[J].Journal of Applied Meteorology and Climatology52(4): 903-917.
null
IPCC, 2021.Summary for policymakers.In Climate change 2021: The physical science basis.Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge and New York: Cambridge University Press, 1-41.
null
Ji Z M Kang S C2013.Double nested dynamical downscaleing experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios[J].Journal of the Atmospheric Sciences70(4): 1278-129.
null
Ji Z M Kang S C Cong Z Y, et al, 2015.Simulation of carbo-naceous aerosols over the Third Pole and adjacent regions: Distribution, transportation, deposition, and climatic effects[J].Climate Dynamics45(9-10): 2831-2846.
null
Jiang Y Luo Y Zhao Z C, et al, 2010.Changes in wind speed over China during 1956-2004[J].Theoretical and Applied Climatology99(3): 421-430.
null
Jiang Y Xu X Liu H, et al, 2017.The underestimated magnitude and decline trend in near-surface wind over China[J].Atmospheric Science Letters18(12): 475-483.
null
Kalnay E Kanamitsu M Kistler R, et al, 1996.The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American Meteorological Society77(3): 437-471.
null
Kendall M1948.Rank Correlation Methods[M].Oxford: Oxford University Press, 1-160.
null
Kim J Paik K2015.Recent recovery of surface wind speed after decadal decrease: A focus on South Korea[J].Climate Dynamics45(5-6): 1699-1712.
null
Kobayashi S Ota Y Harada Y, et al, 2015.The JRA-55 reanalysis: general specifications and basic characteristics[J].Journal of the Meteorological Society of Japan(Series II)93(1): 5-48.
null
Li D L Feng J L Dosio A, et al, 2020b.Historical evaluation and future projections of 100-m wind energy potentials over CORDEX-East Asia[J].Journal of Geophysical Research: Atmosphere125(15): e2020JD032874.
null
Li Y P Chen Y N Li Z, et al, 2020a.Recent recovery of surface wind speed in Northwest China[J].International Journal of Climatology38(12): 4445-4458.
null
Lin C G Yang K Qin J, et al, 2013.Observed coherent trends of surface and upper-air wind speed over China since 1960[J].Journal of Climate26(9): 2891-2903.
null
Mann H1945.Non-parametric tests against trend[J].Econometrica13(3): 245-259.
null
McVicar T Roderick M Donohue R, et al, 2012.Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation[J].Journal of Hydrology416-417: 182-205.
null
New M Lister D Hulme M, et al, 2002.A high resolution data set of surface climate over global land areas[J].Climate Research, 21: 1-25.
null
Pryor S Barthelmie R Young D, et al, 2009.Wind speed trends over the contiguous United States[J].Journal of Geophysical Research, 114: D14105.
null
Qian Y Leung L R2007.A long-term regional simulation and observations of the hydroclimate in China[J].Journal of Geophysical Research, 112: D14104.
null
Taylor K2001.Summarizing multiple aspects of model performance in a single diagram[J].Journal of Geophysical Research106(D7): 7183-7192.
null
Tebaldi C Knutti R2007.The use of the multi-model ensemble in probabilistic climate projections[J].Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences365(1857): 2053-2075.
null
Vautard R Cattiaux J Yiou P, et al, 2010.Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness[J].Nature Geoscience3(11): 756-761.
null
Wan H Wang X L Swail V2010.Homogenization and trend analysis of Canadian near-surface wind speeds[J].Journal of Climate23(5): 1209-1225.
null
Wu J Gao X J2020.Present day bias and future change signal of temperature over China in a series of multi-GCM driven RCM simulations[J].Climate Dynamics, 54: 1113-1130.
null
Wu J Gao X J Giorgi F, et al, 2017.Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset[J].International Journal of Climatology37(Sup.1): 78-800.
null
Wu J Han Z Y Xu Y, et al, 2020.Changes in extreme climate events in China under 1.5°C-4°C global warming targets: projections using an ensemble of regional climate model simulations[J].Journal of Geophysical Research: Atmosphere, 125: e2019JD031057.
null
Wu J Han Z Y Yan Y P, et al, 2021.Future changes in wind energy potential over China using RegCM4 under RCP emission scenarios[J].Advances in Climate Change Research12(2021): 596-610.
null
Wu J Shi Y2021.Changes in surface wind speed and its different grades over China during 1961-2020 based on a high-resolution dataset[J].International Journal of Climatology, DOI: 10. 1002/joc.7453 .
null
Wu J Shi Y Xu Y2020.Evaluation and projection of surface wind speed over China based on CMIP6 GCMs[J].Journal of Geophysical Research: Atmosphere, 125: e2020JD033611.
null
Yang Q Li M X Zu Z Q, et al, 2021.Has the stilling of the surface wind speed ended in China[J].Science China Earth Sciences, 64: 1036-1049.
null
You Q L Kang S C Flügel W, et al, 2010.Decreasing wind speed and weakening latitudinal surface pressure gradients in the Tibetan Plateau[J].Climate Research, 42: 57-64.
null
Yu J Zhou T J Jiang Z, et al, 2019.Evaluation of near surface wind speed changes during 1979 to 2011 over China based on five reanalysis datasets[J].Atmosphere10(12): 804.
null
Zha J L Wu J Zhao D M2016.Changes of probabilities in different wind grades induced by land use and cover change in eastern China Plain during 1980-2011[J].Atmospheric Science Letters17(4): 264-269.
null
Zou L W Zhou T J2013.Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM[J].Advances in Atmospheric Sciences30(3): 806-818.
null
陈虹举, 杨建平, 丁永建, 等, 2021.多模式产品对青藏高原极端气候模拟能力评估[J].高原气象40(5): 977-990.DOI: 10. 7522/j.issn.1000-0534.2020.00104 .
null
陈说, 叶涛, 刘苇航, 等, 2021.NEX-GDDP 和CMIP5 对青藏高原地区近地面气象场历史和未来模拟的评估与偏差校正[J].高原气象40 (2): 257-271.DOI: 10.7522/j.issn.1000-0534. 2020.00019 .
null
樊威伟, 胡泽勇, 荀学义, 等, 2021.青藏高原季风演变及其气候效应综述[[J]].高原气象40(6): 1294-1303.DOI: 10.7522/j.issn.1000-0534.2020.zk013 .
null
韩海涛, 王雅萍, 张瑾, 2021.中国西北地区台站迁移对气候资料均一性影响的研究进展[J].高原气象40(2): 448-454.DOI: 10.7522/j.issn.1000-0534.2020.00032 .
null
吉振明, 2018.青藏高原黑碳气溶胶外源传输及气候效应模拟研究进展与展望[J].地理科学进展37(4): 465-475.
null
江滢, 罗勇, 赵宗慈, 2010.全球气候模式对未来中国风速变化预估[ J].大气科学34(2): 323-336.
null
江滢, 徐希燕, 刘汉武, 等, 2018.CMIP5 和CMIP3 对未来中国近地层风速变化的预估[J].气象与环境学报34(6): 56-63.
null
秦大河, 丁永建, 2009.冰冻圈变化及其影响研究——现状、 趋势及关键问题[J].气候变化研究进展5(4): 187-195.
null
吴佳, 高学杰, 2013.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报56(4): 1102-1111.
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60 年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10. 7522/j.issn.1000-0534.2021.00117 .
null
姚慧茹, 李栋梁, 2016.1971-2012年青藏高原春季风速的年际变化及对气候变暖的响应[J].气象学报74(1): 60-75.
null
姚檀栋, 陈发虎, 崔鹏, 等, 2017.从青藏高原到第三极和泛第三极[J].中国科学院院刊32(9): 924-931.
null
张志斌, 杨莹, 张小平, 等, 2014.我国西南地区风速变化及其影响因素[J].生态学报34(2): 471-481.
null
左志燕, 肖栋, 2021.IPCC AR6解读之从全球到区域气候变化[J].气候变化研究进展17(6): 705-712.
Outlines

/