null | Chen L, Li D L, Pryor S C, 2013.Wind speed trends over China: quantifying the magnitude and assessing causality[J].International Journal of Climatology, 33(11): 2579-2590. |
null | Chen L, Pryor SC, Li D L, 2012.Assessing the performance of Intergovernmental Panel on Climate Change AR5 climate models in simulating and projecting wind speeds over China[J]. Journal of Geophysical Research, 117: D24102.DOI: 10.1029/2012JD017533 . |
null | Chen Z, Li W, Guo J, et al, 2020.Projection of wind energy potential over Northern China using a regional climate model[J].Sustainability, 12(10): 3979. |
null | Fu C B, Yu J, Zhang Y, et al, 2011.Temporal variation of wind speed in China for 1961-2007[J].Theoretical and Applied Climatology, 104(3-4): 313-324. |
null | Gao X J, Shi Y, Han Z Y, et al, 2017.Performance of RegCM4 over major river basins in China[J]. Advances in Atmospheric Sciences, 34(4): 441-455.DOI: 10.1007/s00376-016-6179-7 . |
null | Gao X J, Wang M L, Giorgi F, 2013.Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0[J].Atmospheric and Oceanic Science Letters, 6(5): 381-386. |
null | Giorgi F, Coppola E, Solmon F, et al, 2012.RegCM4: model description and illustrative basic performance over selected CORDEX domains[J].Climate Research, 52(1): 7-29. |
null | Gleckler P J, Taylor K E, Doutriaux C, 2008.Performance metrics for climate models[J].Journal of Geophysical Research, 113: D06104. |
null | Guo H, Xu M, Hu Q, 2011.Changes in near-surface wind speed in China: 1969-2005[J].International Journal of Climatology, 31(3): 349-358. |
null | Gutowski J, William J, Giorgi F, et al, 2016.WCRP COordinated regional downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6[J].Geoscientific Model Development, 9(11): 4087-4095. |
null | Gutowski W J, Ullrich P A, Hall A, et al, 2020.The ongoing need for high-resolution regional climate models: process understanding and stakeholder information[J].Bulletin of the American Meteorological Society, 101(5): E664-E683. |
null | Han Z Y, Shi Y, Wu J, et al, 2019.Combined dynamical and statistical downscaling for high-resolution projections of multiple climate variables in the Beijinge-Tianjine-Hebei Region of China[J].Journal of Applied Meteorology and Climatology, 58: 2387-2403. |
null | He Y, McFarlane N A, Monahan A H, 2012.The influence of boundary layer processes on the diurnal variation of the climatological near-surface wind speed probability distribution over land[J].Journal of Climate, 25(18): 6441-6458. |
null | He Y, Monahan A H, Jones C G, et al, 2010.Probability distributions of land surface wind speeds over North America[J].Journal of Geophysical Research, 115(D4): D04103. |
null | Hersbach H, Bell B, Berrisford P, et al, 2020.The ERA5 global reanalysis[J].Quarterly Journal of the Royal Meteorological Society, 146: 1999-2049. |
null | Holtslag A, Bruijn E, Pan H L, 1990.A high resolution air mass transformation model for short-range weather forecasting[J].Monthly Weather Review, 118: 1561-1575. |
null | Hueging H, Rabea H, Kai B, et al, 2013.Regional changes in wind energy potential over Europe using regional climate model ensemble projections[J].Journal of Applied Meteorology and Climatology, 52(4): 903-917. |
null | IPCC, 2021.Summary for policymakers.In: Climate change 2021: The physical science basis.Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge and New York: Cambridge University Press, 1-41. |
null | Ji Z M, Kang S C, 2013.Double nested dynamical downscaleing experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios[J].Journal of the Atmospheric Sciences, 70(4): 1278-129. |
null | Ji Z M, Kang S C, Cong Z Y, et al, 2015.Simulation of carbo-naceous aerosols over the Third Pole and adjacent regions: Distribution, transportation, deposition, and climatic effects[J].Climate Dynamics, 45(9-10): 2831-2846. |
null | Jiang Y, Luo Y, Zhao Z C, et al, 2010.Changes in wind speed over China during 1956-2004[J].Theoretical and Applied Climatology, 99(3): 421-430. |
null | Jiang Y, Xu X, Liu H, et al, 2017.The underestimated magnitude and decline trend in near-surface wind over China[J].Atmospheric Science Letters, 18(12): 475-483. |
null | Kalnay E, Kanamitsu M, Kistler R, et al, 1996.The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American Meteorological Society, 77(3): 437-471. |
null | Kendall M, 1948.Rank Correlation Methods[M].Oxford: Oxford University Press, 1-160. |
null | Kim J, Paik K, 2015.Recent recovery of surface wind speed after decadal decrease: A focus on South Korea[J].Climate Dynamics, 45(5-6): 1699-1712. |
null | Kobayashi S, Ota Y, Harada Y, et al, 2015.The JRA-55 reanalysis: general specifications and basic characteristics[J].Journal of the Meteorological Society of Japan(Series II), 93(1): 5-48. |
null | Li D L, Feng J L, Dosio A, et al, 2020b.Historical evaluation and future projections of 100-m wind energy potentials over CORDEX-East Asia[J].Journal of Geophysical Research: Atmosphere, 125(15): e2020JD032874. |
null | Li Y P, Chen Y N, Li Z, et al, 2020a.Recent recovery of surface wind speed in Northwest China[J].International Journal of Climatology, 38(12): 4445-4458. |
null | Lin C G, Yang K, Qin J, et al, 2013.Observed coherent trends of surface and upper-air wind speed over China since 1960[J].Journal of Climate, 26(9): 2891-2903. |
null | Mann H, 1945.Non-parametric tests against trend[J].Econometrica, 13(3): 245-259. |
null | McVicar T, Roderick M, Donohue R, et al, 2012.Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation[J].Journal of Hydrology, 416-417: 182-205. |
null | New M, Lister D, Hulme M, et al, 2002.A high resolution data set of surface climate over global land areas[J].Climate Research, 21: 1-25. |
null | Pryor S, Barthelmie R, Young D, et al, 2009.Wind speed trends over the contiguous United States[J].Journal of Geophysical Research, 114: D14105. |
null | Qian Y, Leung L R, 2007.A long-term regional simulation and observations of the hydroclimate in China[J].Journal of Geophysical Research, 112: D14104. |
null | Taylor K, 2001.Summarizing multiple aspects of model performance in a single diagram[J].Journal of Geophysical Research, 106(D7): 7183-7192. |
null | Tebaldi C, Knutti R, 2007.The use of the multi-model ensemble in probabilistic climate projections[J].Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857): 2053-2075. |
null | Vautard R, Cattiaux J, Yiou P, et al, 2010.Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness[J].Nature Geoscience, 3(11): 756-761. |
null | Wan H, Wang X L, Swail V, 2010.Homogenization and trend analysis of Canadian near-surface wind speeds[J].Journal of Climate, 23(5): 1209-1225. |
null | Wu J, Gao X J, 2020.Present day bias and future change signal of temperature over China in a series of multi-GCM driven RCM simulations[J].Climate Dynamics, 54: 1113-1130. |
null | Wu J, Gao X J, Giorgi F, et al, 2017.Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset[J].International Journal of Climatology, 37(Sup.1): 78-800. |
null | Wu J, Han Z Y, Xu Y, et al, 2020.Changes in extreme climate events in China under 1.5°C-4°C global warming targets: projections using an ensemble of regional climate model simulations[J].Journal of Geophysical Research: Atmosphere, 125: e2019JD031057. |
null | Wu J, Han Z Y, Yan Y P, et al, 2021.Future changes in wind energy potential over China using RegCM4 under RCP emission scenarios[J].Advances in Climate Change Research, 12(2021): 596-610. |
null | Wu J, Shi Y, 2021.Changes in surface wind speed and its different grades over China during 1961-2020 based on a high-resolution dataset[J]. International Journal of Climatology, DOI: 10. 1002/joc.7453 . |
null | Wu J, Shi Y, Xu Y, 2020.Evaluation and projection of surface wind speed over China based on CMIP6 GCMs[J].Journal of Geophysical Research: Atmosphere, 125: e2020JD033611. |
null | Yang Q, Li M X, Zu Z Q, et al, 2021.Has the stilling of the surface wind speed ended in China[J].Science China Earth Sciences, 64: 1036-1049. |
null | You Q L, Kang S C, Flügel W, et al, 2010.Decreasing wind speed and weakening latitudinal surface pressure gradients in the Tibetan Plateau[J].Climate Research, 42: 57-64. |
null | Yu J, Zhou T J, Jiang Z, et al, 2019.Evaluation of near surface wind speed changes during 1979 to 2011 over China based on five reanalysis datasets[J].Atmosphere, 10(12): 804. |
null | Zha J L, Wu J, Zhao D M, 2016.Changes of probabilities in different wind grades induced by land use and cover change in eastern China Plain during 1980-2011[J].Atmospheric Science Letters, 17(4): 264-269. |
null | Zou L W, Zhou T J, 2013.Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM[J].Advances in Atmospheric Sciences, 30(3): 806-818. |
null | |
null | |
null | |
null | |
null | 吉振明, 2018.青藏高原黑碳气溶胶外源传输及气候效应模拟研究进展与展望[J].地理科学进展, 37(4): 465-475. |
null | 江滢, 罗勇, 赵宗慈, 2010.全球气候模式对未来中国风速变化预估[ J].大气科学, 34(2): 323-336. |
null | 江滢, 徐希燕, 刘汉武, 等, 2018.CMIP5 和CMIP3 对未来中国近地层风速变化的预估[J].气象与环境学报, 34(6): 56-63. |
null | 秦大河, 丁永建, 2009.冰冻圈变化及其影响研究——现状、 趋势及关键问题[J].气候变化研究进展, 5(4): 187-195. |
null | 吴佳, 高学杰, 2013.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报, 56(4): 1102-1111. |
null | |
null | 姚慧茹, 李栋梁, 2016.1971-2012年青藏高原春季风速的年际变化及对气候变暖的响应[J].气象学报, 74(1): 60-75. |
null | 姚檀栋, 陈发虎, 崔鹏, 等, 2017.从青藏高原到第三极和泛第三极[J].中国科学院院刊, 32(9): 924-931. |
null | 张志斌, 杨莹, 张小平, 等, 2014.我国西南地区风速变化及其影响因素[J].生态学报, 34(2): 471-481. |
null | 左志燕, 肖栋, 2021.IPCC AR6解读之从全球到区域气候变化[J].气候变化研究进展, 17(6): 705-712. |