null | Alhassan A R M, Ma W W, Li G, et al, 2018.Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet meadow on the Qinghai-Tibet Plateau[J]. Ecology and Evolution, 8(5): 1-12.DOI: 10.1002/ece3.4656 . |
null | Campbell G S, 1974.A simple method for determining unsaturated conductivity from moisture retention data[J]. Soil Science, 117(6): 311-314.DOI: 10.1097/00010694-197406000-00001 . |
null | Chen Y Y, Yang K, Tang W J, et al, 2012, Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands[J]. Science China Earth Sciences, 55(6): 1001-1011.DOI: 10.1007/s11430-012-4433-0 . |
null | Gao Y H, Cuo L, Zhang Y X, et al, 2014.Changes in moisture flux over the Tibetan Plateau during 1979-2011 and possible mechanisms[J]. Journal of Climate, 27(5): 1876-1893.DOI: 10. 1175/JCLI-D-13-00321.1 . |
null | He J, Yang K, Tang W J, et al, 2020.The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 7(1).DOI: 10.1038/s41597-020-0369-y . |
null | Kersten M S, 1949.Laboratory research for the determination of the thermal properties of soils[R].DTIC Document. |
null | Li K, Zhang J Y, Yang K, et al, 2019.The role of soil moisture feedbacks in future summer temperature change over East Asia[J]. Journal of Geophysical Research: Atmospheres, 124(22): 12034-12056.DOI: 10.1029/2018JD029670 . |
null | Liu W J, Chen S Y, Qin X, et al, 2012.Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau[J]. Environmental Research Letters, 7(3).DOI: 10.1088/1748-9326/7/3/035401 . |
null | Luo Q, Yang K, Chen Y Y, et al, 2020.Method development for estimating soil organic carbon content in an alpine region using soil moisture data[J]. Science China Earth Sciences, 63(4): 591-601.DOI: 10.1007/s11430-019-9554-8 . |
null | Luo S Q, Fang X W, Lyu S H, et al, 2017.Improving CLM4.5 simulations of land-atmosphere exchange during freeze-thaw processes on the Tibetan Plateau[J]. Journal of Meteorological Research, 31(5): 916-930.DOI: 10.1007/s13351-017-6063-0 . |
null | Sun S B, Chen B Z, Chen J, et al, 2016.Comparison of remotely-sensed and modeled soil moisture using CLM4.0 with in situ measurements in the central Tibetan Plateau area[J]. Cold Regions Science and Technology, 129: 31-44.DOI: 10.1016/j.coldregions.2016.06.005 . |
null | Yang K, Qin J, Zhao L, et al, 2013.A multiscale soil moisture and freeze-thaw monitoring network on the Third Pole[J]. Bulletin of the American Meteorological Society, 94(12): 1907-1916.DOI: 10.1175/BAMS-D-12-00203.1 . |
null | Yang K, Wang C, 2019.Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations[J]. Agricultural and Forest Meteorology, 265: 280-294.DOI: 10. 1016/j.agrformet.2018.11.011 . |
null | Yang K, Koike T, Ye B S, et al, 2005.Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition[J]. Journal of Geophysical Research: Atmospheres, 110: D8.DOI: 10.1029/2004JD005500 . |
null | Yang M X, Wang X J, Pang G J, et al, 2019.The Tibetan Plateau cryosphere: observations and model simulations for current status and recent changes[J]. Earth-Science Reviews, 190: 353-369.DOI: 10.1016/j.earscirev.2018.12.018 . |
null | Zhao H, Zeng Y J, Lv S N, et al, 2018.Analysis of soil hydraulic and thermal properties for land surface modelling over the Tibetan Plateau[J]. Earth System Science Data Discussions, 10(2): 1031-1061.DOI: 10.5194/essd-10-1031-2018 . |
null | Zheng D H, Velde R V D, Su Z B, et al, 2015a.Augmentations to the Noah Model Physics for application to the Yellow River Source Area.Part I: Soil water flow[J]. Journal of Hydrometeorology, 16(6): 2659-2676.DOI: 10.1175/JHM-D-14-0198.1 . |
null | Zheng D H, Velde R V D, Su Z B, et al, 2015b.Augmentations to the Noah model physics for application to the Yellow River source area.Part II: turbulent heat fluxes and soil heat transport[J]. Journal of Hydrometeorology, 16(6): 2677-2694.DOI: 10. 1175/JHM-D-14-0199.1 . |
null | Zhou J, Wen J, Liu R, et al, 2018.Late spring soil moisture variation over the Tibetan Plateau and its influences on the plateau summer monsoon[J]. International Journal of Climatology, 38(12): 4597-4609.DOI: 10.1002/joc.5723 . |
null | |
null | |
null | 罗斯琼, 吕世华, 张宇, 等, 2008.CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象, 27(2): 259-271. |
null | 罗斯琼, 吕世华, 张宇, 等, 2009.青藏高原中部冻土环境下土壤水分监测[J].冰川冻土, 31(6): 1150-1155. |
null | |
null | 沈丹, 王磊, 2015.青藏高原土壤湿度对中国夏季降水与气温影响的敏感试验[J].气象科技, 43(6): 1095-1103. |
null | 王澄海, 尚大成, 2007.藏北高原土壤温、 湿度变化在高原干湿季转换中的作用[J].高原气象, 26(4): 677-685. |
null | 武洁, 高艳红, 潘永洁, 等, 2020.青藏高原中东部地区土壤湿度模拟性能评估以及误差分析[J]. 地球物理学报, 63(6): 2184-2198.DOI: 10.6038/cjg2020N0129 . |
null | |
null | 杨健, 马耀明, 2012.青藏高原典型下垫面的土壤温湿特征[J].冰川冻土, 34(4): 813-820. |
null | |