Blending Scheme with Mixed Truncation Scale and Its Application in Southwest Regional Model

  • Gaoshan TIAN ,
  • Yaodeng CHEN ,
  • Qingjiu GAO ,
  • Zengliang ZANG
Expand
  • 1. Key Laboratory of Meteorological Disaster of Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China
    2. College of Meteorology and Oceanography,National University of Defence Technology,Nanjing 211101,Jiangsu,China

Received date: 2021-08-30

  Revised date: 2022-01-19

  Online published: 2022-12-15

Cite this article

Gaoshan TIAN , Yaodeng CHEN , Qingjiu GAO , Zengliang ZANG . Blending Scheme with Mixed Truncation Scale and Its Application in Southwest Regional Model[J]. Plateau Meteorology, 2022 , 41(6) : 1630 -1641 . DOI: 10.7522/j.issn.1000-0534.2022.00005

References

null
Berre L2000.Estimation of synoptic and mesoscale forecast error convariances in a limited area model[J].Monthly Weather Review128(3): 644-667.DOI: 10.1175/1520-0493(2000)128<0644: EOSAMF>2.0.CO; 2 .
null
Bjerknes V1911.Dynamic meteorology and hydrology.PartⅡ.Kinematics[M].New York: Camegie Institude, Gibson Bros.
null
Durand Y Bougeault P1987.L'analyse objective PERIDOT[M].Dir.de la Meteorologie Nationale.
null
Durran D R Weyn J A2016.Thunderstorms do not get butterflies[J].Bulletin of The American Meteorological Society97(2): 237-243.DOI: 10.1175/BAMS-D-15-00070.1 .
null
Feng J Chen M Li Y J, et al, 2021.An implementation of full cycle strategy using dynamic blending for rapid refresh short-range weather forecasting in China[J].Advances in Atmospheric Sciences38(6): 943-956.DOI: 10.1007/s00376-021-0316-7 .
null
Feng J Sun J Z Zhang Y2020.A dynamic blending scheme to mitigate large‐scale bias in regional models[J].Journal of Advances in Modeling Earth Systems12(3): e1754M-e2019M.DOI: 10.1029/2019MS001754 .
null
Hsiao L Huang X Y Kuo Y, et al, 2015.Blending of global and regional analyses with a spatial filter: Application to typhoon prediction over the western North Pacific Ocean[J].Weather & Forecasting30(3): 754-770.DOI: 10.1175/WAF-D-14-00047.1 .
null
Hsiao L Liou C Yeh T, et al, 2010.A vortex relocation scheme for tropical cyclone initialization in advanced research WRF[J].Monthly Weather Review138(8): 3298-3315.DOI: 10.1175/2010MWR3275.1 .
null
Lorenz E N1969.The predictability of a flow which possesses many scales of motion[J].Tellus21(3): 289-307.DOI: 10.3402/tellusa.v21i3.10086 .
null
Nielsen E R Schumacher R S2016.Using convection-allowing ensembles to understand the predictability of an extreme rainfallevent[J].Monthly Weather Review144(10): 3651-3676.DOI: 10.1175/MWR-D-16-0083.1 .
null
Raymond, William H1988.High-order low-pass implicit tangent filters for use in finite area calculations[J].Monthly Weather Review166(11): 2132–2141.DOI: 10.1175/1520-0493(1988)116<2132: HOLPIT>2.0.CO; 2
null
Skamarock W C Klemp J B Dudhia J, et al, 2019.A description of the advanced research WRF model version 4[J].National Center for Atmospheric Research: Boulder, CO, USA, 145.DOI: 10.5065/1dfh-6p97 .
null
Vincent C L Hahmann A N2015.The impact of grid and spectral nudging on the variance of the near-surface wind speed[J].Journal of Applied Meteorology and Climatology54(5): 1021-1038.DOI: 10.1175/JAMC-D-14-0047.1 .
null
Wang H L Huang X Y Xu D, et al, 2014.A scale-dependent blending scheme for WRFDA: impact on regional weather forecasting[J].Geoscientific Model Development7(4): 1819-1828.DOI: 10.5194/gmd-7-1819-2014 .
null
Weyn J A Durran D R2017.The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations[J].Journal of Atmospheric Sciences74(7): 2191-2210.DOI: 10.1175/JAS-D-17-0006.1 .
null
Yang M J Gong J D Wang R C, et al, 2019.A comparison of the blending and constraining methods to introduce large-scale information into grapes mesoscale analysis[J].Journal of Tropical Meteorology25(2): 227-244.DOI: 10.16555/j.1006-8775. 2019.02.009 .
null
Yang X H2005.Analysis blending using a spatial filter in grid-point model coupling[J].Hirlam Newsletter48(10): 49-55.
null
陈葆德, 王晓峰, 李泓, 等, 2013.快速更新同化预报的关键技术综述[J].气象科技进展3(2): 29-35.DOI: 10.3969/j.issn. 2095-1973.2013.02.003 .
null
陈炜, 2018.青藏高原东部重力波特征及其与西南涡活动的关系[D].成都: 成都信息工程大学.
null
高笃鸣, 李跃清, 程晓龙, 2018.基于西南涡加密探空资料同化的一次奇异路径耦合低涡大暴雨数值模拟研究[J].气象学报76(3): 343-360.DOI: 10.11676/qxxb2018.008 .
null
何光碧, 屠妮妮, 高笃明, 等, 2017.西南区域自动站资料对区域模式预报影响的同化试验分析[J].高原山地气象研究37(3): 1-9.DOI: 10.3969/j.issn.1674-2184.2017.03.001 .
null
衡志炜, 程晓龙, 2018.西南涡加密资料同化对西南区域模式降水预报的影响[J].高原山地气象研究38(2): 1-8.DOI: 10.3969/j.issn.1674-2184.2018.02.001 .
null
侯劭禹, 巩远发, 赵福虎, 等, 2020.尺度分离技术在一次切变线诱发西南涡暴雨个例中的应用[J].成都信息工程大学学报35(4): 447-454.DOI: 10.16836/j.cnki.jcuit.2020.04.014 .
null
金妍, 李国平, 2021.爬流和绕流对山地突发性暴雨的影响[J].高原气象40(2): 314-323.DOI: 10.7522/j.issn.1000-0534. 2020.00041 .
null
李毓芳, R A 安塞斯, 1984.次天气尺度和中尺度预报中的初值问题[J].气象学报42(4): 499-504.DOI: 10.11676/qxxb1984.060 .
null
李跃清, 2021.西南涡涡源研究的有关新进展[J].高原气象40(6): 1394-1406.DOI: 10.7522/j.issn.1000-0534.2021.zk005
null
李跃清, 徐祥德, 2016.西南涡研究和观测试验回顾及进展[J].气象科技进展6(3): 134-140.DOI: 10.3969/j.issn.2095-1973.2016.03.018 .
null
刘金卿, 刘红武, 徐靖宇, 2021.西南涡引发的强对流天气特征[J].高原气象40(3): 525-534. DOI: 10.7522/j.issn.1000-0534. 2020.00027 .
null
闵锦忠, 吴乃庚, 2020.近二十年来暴雨和强对流可预报性研究进展[J].大气科学44(5): 1039-1056.DOI: 10.3878/j.issn. 1006-9895.2003.19186 .
null
肖玉华, 康岚, 徐琳娜, 等, 2013.西南区域中尺度数值模式预报性能及其与天气过程关系初探[J].气象39(10): 1257-1264.DOI: 10.7519/j.issn.1000-0526.2013.10.003 .
null
徐渊, 闵锦忠, 庄潇然, 2021.基于对流尺度集合模拟的长江中下游暖区对流过程的可预报性研究[J/OL].高原气象.
null
张宇, 陈德辉, 仲跻芹, 2016.数值预报在青藏高原的不确定性对其下游预报的影响[J].高原气象35(6): 1430-1440.DOI: 10.7522 /j.issn.1000-0534.2015.00110 .
null
周玉淑, 颜玲, 吴天贻, 等, 2019.高原涡和西南涡影响的两次四川暴雨过程的对比分析[J].大气科学43(4): 813-830.DOI: 10.3878/j.issn.1006-9895.1807.18147 .
null
庄照荣, 陈静, 黄丽萍, 等, 2018.全球和区域分析的混合方案对区域预报的影响试验[J].气象44(12): 1509-1517.DOI: 10. 7519/j.issn.1000-0526.2018.12.001 .
null
庄照荣, 王瑞春, 李兴良, 2020.全球大尺度信息在3km GRAPES-RAFS系统中的应用[J].气象学报78(1): 33-47.DOI: 10. 11676/qxxb2020.002 .
Outlines

/