Comparative Study of Solid Precipitation Observation in Alpine Mountains

  • Puchen CHEN ,
  • Zhongqin LI ,
  • Puyu WANG ,
  • Yufeng JIA ,
  • Shuang JIN
Expand
  • 1. College of Geography and Environment Science,Northwest Normal University,Lanzhou 730070,Gansu,China
    2. State Key Laboratory of Cryospheric Science/Tianshan Glaciological Station,Northwest Institute of Eco-Environment and Resources,CAS,Lanzhou 730000,Gansu,China
    3. College of Sciences,Shihezi University,Shihezi 832003,Xinjiang,China

Received date: 2021-09-14

  Revised date: 2022-03-07

  Online published: 2023-01-13

Cite this article

Puchen CHEN , Zhongqin LI , Puyu WANG , Yufeng JIA , Shuang JIN . Comparative Study of Solid Precipitation Observation in Alpine Mountains[J]. Plateau Meteorology, 2023 , 42(1) : 116 -127 . DOI: 10.7522/j.issn.1000-0534.2022.00021

References

null
Agnew J Space R A L2013.Final report on the operation of a campbell scientific PWS100 present weather sensor at Chilbolton Observatory[J].Science and Technology Facility Council: Swindon, UK, p.12.
null
Bocchieri J R1980.The objective use of upper air soundings to specify precipitation type[J].Monthly Weather Review108(5): 596-603.
null
Scientific Campbell, Inc, 2015.PWS100 present weather sensor; instruction manual[M].Revision 9/15; Campbell Scientific, Inc: Logan, UT, USA.
null
Cheval S Birsan M V DumitrescuDumit R A2014.Climate variability in the Carpathian Mountains region over 1961-2010[J].Global and Planetary Change, 118: 85-96.
null
Ding B H Yang K Qin J, et al, 2014.The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization[J].Journal of Hydrology, 513: 154-163.
null
Ellis R A Sandford A P Jones G E, et al, 2006.New laser technology to determine present weather parameters[J].Measurement Science and Technology17(7): 1715-1722.
null
Fassnacht S R2004.Estimating Alter-shielded gauge snowfall undercatch, snowpack sublimation, and blowing snow transport at six sites in the coterminous USA[J].Hydrological Processes18(18): 3481-3492.
null
Fortin V Therrien C Anctil F2008.Correcting wind-induced bias in solid precipitation measurements in case of limited and uncertain data[J].Hydrological Processes: An International Journal22(17): 3393-3402.
null
Gires A Tchiguirinskaia I Schertzer D2016.Multifractal comparison of the outputs of two optical disdrometers[J].Hydrological Sciences Journal61(9): 1641-1651.
null
Goodison B E1992.The WMO solid precipitation intercomparison, Canadian Assessment[J].CIMO, International Organization Committee for the WMO Solid Precipitation Measurement Intercomparison.Sixth session.Final Rep, 5.Goodison B E, Metcalfe J R, 1992.The WMO solid precipitation inter-comparison: Canadian assessment[R].WMO/TD No.462, WMO, Geneva, 221-225.
null
Goodison B E1998.WMO solid precipitation measurement intercomparison, Final report[J].WMO Instruments and Observing Method Report, 67: 212.GoodisonB E, LouieP Y T, YangD Q, 1998.WMO solid precipitation measurement intercomparison: Final Report[R].WMO/TD-No.872, WMO, Geneva, 1-212.
null
Hagg W Braun L Weber M, et al, 2006.Runoff modelling in glacierized Central Asian catchments for present-day and future climate[J].Hydrology Research37(2): 93-105.
null
Jia Y F Li Zhong Z Q Xu C H, et al, 2020.A comparison of precipitation measurements with a PWS100 Laser sensor and a geonor T-200B precipitation gauge at a Nival Glacial Zone in Eastern Tianshan, Central Asia[J].Atmosphere11(10): 1079.
null
Kang E S Cheng G D Lan Y C, et al, 1999.A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes[J].Science in China Series D42(1): 52-63.
null
Kang E S Ohmura A1994.Energy, water and mass balance, and discharge modeling in the Tianshan Glaciated Basin[J].Science in China Series B24(9): 983-991.
null
Kochendorfer J Nitu R Wolff M, et al, 2017b.Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE[J].Hydrology and Earth System Sciences21(7): 3525-3542.
null
Kochendorfer J Rasmussen R Wolff M, et al, 2017a.The quantification and correction of wind-induced precipitation measurement errors[J].Hydrology and Earth System Sciences21(4): 1973-1989.
null
Li Z Q Li C J Li Y F, et al, 2007.Preliminary results from measurements of selected trace metals in the snow-firn pack on Urumqi glacier No.1, eastern Tien Shan, China[J].Journal of Glaciology53(182): 368-373.
null
Li Z Q Wang W B Zhang M J, et al, 2010.Observed changes in streamflow at the headwaters of the Urumqi River, eastern Tianshan, central Asia[J].Hydrological Processes: An International Journal24(2): 217-224.
null
Metcalfe J R Ishida S Goodison B E1994.A corrected precipitation archive for the Northwest Territorie[C]//Cohen S, editor.Proceedings of Sixth Biennial AES/DIAND Meeting on Northern Climate[C].Yellowknife: Environment Canada, 110-117.
null
Michaelides S Levizzani V Anagnostou E, et al, 2009.Precipitation Measurement, remote sensing, climatology and modeling[J].Atmospheric Research94(4): 512-533.
null
Montero-Martínez, Torres-Pérez E F García-García F2016.A comparison of two optical precipitation sensors with different operating principles: The PWS100 and the OAP-2DP[J].Atmospheric Research, 178: 550-558.
null
Pierre A Jutras S Smith C, et al, 2019.Evaluation of catch efficiency transfer functions for unshielded and single-Alter-shielded solid precipitation measurements[J].Journal of Atmospheric and Oceanic Technology36(5): 865-881.
null
Smith C D2006.Correcting the wind bias in snowfall measurements made with a GEONOR T-200B percipation gauge and alter wind shield[C/OL].//
null
Smith C D Amber R John K, et al, 2020.Evaluation of the WMO Solid Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements[J].Hydrology and Earth System Sciences24(8): 4025-4043.
null
Smith C D Garth V K Lauren A, et al, 2017.Measuring precipitation with a geolysimeter[J].Hydrology and Earth System Sciences Discussions21(10): 5263-5272.
null
Smith C D2007.Correcting the wind bias in snowfall measurements made with a Geonor T-200B precipitation gauge and alter wind shield[J].Proceedings of the 14th SMOI, San Antonio, 20.
null
Sun M P Li Z Q Yao X J, et al, 2015.Modeling the hydrological response to climate change in a glacierized high mountain region, northwest China[J].Journal of Glaciology61(225): 127-136.
null
Upadhyay D S1995.Cold climate hydrometeorology[M].New York: John Wiley and Sons Inc, 105-111.
null
Wagner A J1957.Mean temperature from 1000 mb to 500 mb as a predictor of precipitation type[J].Bulletin of the American Meteorological Society38(10): 584-590.
null
Wauben W Mathijssen T Oudshoorn C2016.Field evaluation of sensors for precipitation type discrimination[C].In Proceedings of the WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation (CIMO TECO 2016), Madrid, Spain, 27-30.
null
Wolff M A Isaksen K Petersen-?verleir A, et al, 2015.Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study[J].Hydrology and Earth System Sciences19(2): 951-967.
null
Yang D Q1988.Research on analysis and correction of systematic errors in precipitation measurement in Urumqi River Basin, Tianshan[D].Thesis, Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, Lanzhou, China, 169.
null
Yang D Q Goodison B E Benson C, et al, 1998a.Adjustment of daily precipitation at 10 climate stations in Alaska: application of WMO Intercomparison results[J].Water Resources Research34(2): 241-256.
null
Yang D Q Goodison B E Metcalfe J R, et al, 1998b.Accuracy of NWS 8" standard nonrecording precipitation gauge: results and application of WMO intercomparison[J].Journal of Atmospheric and Oceanic Technology15(1): 54-68.
null
Ye B S Yang D Q Ding Y Z, et al, 2004.Abias-corrected precipitation climatology for China[J].Hydrometeor, 5: 1147-1160.
null
Zhang G F Li Z Q Wang W B, et al, 2014b.Rapid decrease of observed mass balance in the Urumqi Glacier No.1, Tianshan Mountains, central Asia[J].Quaternary International, 349: 135-141.
null
Zhang K X Pan S M Cao L G, et al, 2014a.Spatial distribution and temporal trends in precipitation extremes over the Hengduan Mountains region, China, from 1961 to 2012[J].Quaternary International, 349: 346-356.
null
陈仁升, 康尔泗, 丁永建, 2014.中国高寒区水文学中的一些认识和参数[J].水科学进展25(3): 307-317.
null
何晓波, 叶柏生, 丁永建, 2009.青藏高原唐古拉山区降水观测误差修正分析[J].水科学进展20(3): 403-408.
null
李忠勤, 2011.天山乌鲁木齐河源1号冰川近期研究与应用[M].北京: 气象出版社, 58-60.
null
刘俊峰, 陈仁升, 卿文武, 等, 2011.基于TRMM降水数据的山区降水垂直分布特征[J].水科学进展22(4): 447-454.
null
刘奇, 傅云飞, 2007.基于TRMM/TMI的亚洲夏季降水研究[J].中国科学D辑: 地球科学37(1): 111-122.
null
刘胜男, 王改利, 2020.DSD参数对双频雷达估测降水的影响研究[J].高原气象39(3): 570-580.DOI: 10.7522/j.issn.1000-0534.2019.00092 .
null
刘燕, 刘友存, 焦克勤, 等, 2019.1990年以来天山乌鲁木齐河上游水资源研究进展[J].冰川冻土41(4): 958-967.
null
孙美平, 姚晓军, 李忠勤, 等, 2014.天山东段冰雪消融与产汇流水文过程——以乌鲁木齐河源区为例[J].地理学报69(7): 945-957.
null
王俊, 王文青, 王洪, 等, 2021.短时强降水和冰雹云降水个例雨滴谱特征分析[J].高原气象40(5): 1071-1086.DOI: 10.7522/j.issn.1000-0534.2020.00091 .
null
王磊, 陈仁升, 宋耀选, 2017.高寒山区面降水量获取方法及影响因素研究进展[J].高原气象36(6): 1546-1556.DOI: 10. 7522/j.issn.1000-0534.2017.00007 .
null
徐洪雄, 陈渭民, 杜波, 2010.4种当代天气现象仪自动观测分析的比较研究[J].农技服务27(11): 1489-1492.
null
杨大庆, 姜彤, 张寅生, 等, 1988.天山乌鲁木齐河源降水观测误差分析及其改正[J].冰川冻土10(4): 384-399.
null
杨大庆, 康尔泗, Felix B1992b.天山乌鲁木齐河源高山区的降水特征[J].冰川冻土14(3): 258-266.
null
杨大庆, 施雅风, 康尔泗, 等, 1991.Results of Solid Precipitation Measurement Intercomparison in the Alpine Area of Rumqi River Basin[J].中国科学通报(英文版)36(13): 1105-1109.
null
杨大庆, 施雅风, 康尔泗, 等, 1992a.天山乌鲁木齐河流域降水观测系统误差分析和修正[C]//乌鲁木齐河山区水资源形成和估算[M].北京: 科学出版社, 14-40.
null
张正勇, 何新林, 刘琳, 等, 2015.中国天山山区降水空间分布模拟及成因分析[J].水科学进展26(4): 500-508.
null
赵求东, 叶柏生, 何晓波, 等, 2014.唐古拉山区Geonor T-200B雨雪量计日降水观测误差修正[J].高原气象33(2), 452-459.DOI: 10.7522/j.issn.1000-0534.2013.00013 .
null
郑勤, 陈仁升, 韩春坛, 等, 2018.祁连山TRwS204与中国标准雨量筒降水观测对比研究[J].高原气象37(3): 747-756.DOI: 10.7522/j.issn.1000-0534.2018.00039 .
Outlines

/