null | Agnew J, Space R A L, 2013.Final report on the operation of a campbell scientific PWS100 present weather sensor at Chilbolton Observatory[J].Science and Technology Facility Council: Swindon, UK, p.12. |
null | Bocchieri J R, 1980.The objective use of upper air soundings to specify precipitation type[J].Monthly Weather Review, 108(5): 596-603. |
null | Scientific Campbell, Inc, 2015.PWS100 present weather sensor; instruction manual[M].Revision 9/15; Campbell Scientific, Inc: Logan, UT, USA. |
null | Cheval S, Birsan M V, DumitrescuDumit R A, 2014.Climate variability in the Carpathian Mountains region over 1961-2010[J].Global and Planetary Change, 118: 85-96. |
null | Ding B H, Yang K, Qin J, et al, 2014.The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization[J].Journal of Hydrology, 513: 154-163. |
null | Ellis R A, Sandford A P, Jones G E, et al, 2006.New laser technology to determine present weather parameters[J].Measurement Science and Technology, 17(7): 1715-1722. |
null | Fassnacht S R, 2004.Estimating Alter-shielded gauge snowfall undercatch, snowpack sublimation, and blowing snow transport at six sites in the coterminous USA[J].Hydrological Processes, 18(18): 3481-3492. |
null | Fortin V, Therrien C, Anctil F, 2008.Correcting wind-induced bias in solid precipitation measurements in case of limited and uncertain data[J].Hydrological Processes: An International Journal, 22(17): 3393-3402. |
null | Gires A, Tchiguirinskaia I, Schertzer D, 2016.Multifractal comparison of the outputs of two optical disdrometers[J].Hydrological Sciences Journal, 61(9): 1641-1651. |
null | Goodison B E, 1992.The WMO solid precipitation intercomparison, Canadian Assessment[J].CIMO, International Organization Committee for the WMO Solid Precipitation Measurement Intercomparison.Sixth session.Final Rep, 5.Goodison B E, Metcalfe J R, 1992.The WMO solid precipitation inter-comparison: Canadian assessment[R].WMO/TD No.462, WMO, Geneva, 221-225. |
null | Goodison B E, 1998.WMO solid precipitation measurement intercomparison, Final report[J].WMO Instruments and Observing Method Report, 67: 212.GoodisonB E, LouieP Y T, YangD Q, 1998.WMO solid precipitation measurement intercomparison: Final Report[R].WMO/TD-No.872, WMO, Geneva, 1-212. |
null | Hagg W, Braun L, Weber M, et al, 2006.Runoff modelling in glacierized Central Asian catchments for present-day and future climate[J].Hydrology Research, 37(2): 93-105. |
null | Jia Y F, Li Zhong Z Q, Xu C H, et al, 2020.A comparison of precipitation measurements with a PWS100 Laser sensor and a geonor T-200B precipitation gauge at a Nival Glacial Zone in Eastern Tianshan, Central Asia[J].Atmosphere, 11(10): 1079. |
null | Kang E S, Cheng G D, Lan Y C, et al, 1999.A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes[J].Science in China Series D, 42(1): 52-63. |
null | Kang E S, Ohmura A, 1994.Energy, water and mass balance, and discharge modeling in the Tianshan Glaciated Basin[J].Science in China Series B, 24(9): 983-991. |
null | Kochendorfer J, Nitu R, Wolff M, et al, 2017b.Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE[J].Hydrology and Earth System Sciences, 21(7): 3525-3542. |
null | Kochendorfer J, Rasmussen R, Wolff M, et al, 2017a.The quantification and correction of wind-induced precipitation measurement errors[J].Hydrology and Earth System Sciences, 21(4): 1973-1989. |
null | Li Z Q, Li C J, Li Y F, et al, 2007.Preliminary results from measurements of selected trace metals in the snow-firn pack on Urumqi glacier No.1, eastern Tien Shan, China[J].Journal of Glaciology, 53(182): 368-373. |
null | Li Z Q, Wang W B, Zhang M J, et al, 2010.Observed changes in streamflow at the headwaters of the Urumqi River, eastern Tianshan, central Asia[J].Hydrological Processes: An International Journal, 24(2): 217-224. |
null | Metcalfe J R, Ishida S, Goodison B E, 1994.A corrected precipitation archive for the Northwest Territorie[C]//Cohen S, editor.Proceedings of Sixth Biennial AES/DIAND Meeting on Northern Climate[C].Yellowknife: Environment Canada, 110-117. |
null | Michaelides S, Levizzani V, Anagnostou E, et al, 2009.Precipitation Measurement, remote sensing, climatology and modeling[J].Atmospheric Research, 94(4): 512-533. |
null | Montero-Martínez, Torres-Pérez E F, García-García F, 2016.A comparison of two optical precipitation sensors with different operating principles: The PWS100 and the OAP-2DP[J].Atmospheric Research, 178: 550-558. |
null | Pierre A, Jutras S, Smith C, et al, 2019.Evaluation of catch efficiency transfer functions for unshielded and single-Alter-shielded solid precipitation measurements[J].Journal of Atmospheric and Oceanic Technology, 36(5): 865-881. |
null | Smith C D, 2006.Correcting the wind bias in snowfall measurements made with a GEONOR T-200B percipation gauge and alter wind shield[C/OL].// |
null | Smith C D, Amber R, John K, et al, 2020.Evaluation of the WMO Solid Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements[J].Hydrology and Earth System Sciences, 24(8): 4025-4043. |
null | Smith C D, Garth V K, Lauren A, et al, 2017.Measuring precipitation with a geolysimeter[J].Hydrology and Earth System Sciences Discussions, 21(10): 5263-5272. |
null | Smith C D, 2007.Correcting the wind bias in snowfall measurements made with a Geonor T-200B precipitation gauge and alter wind shield[J].Proceedings of the 14th SMOI, San Antonio, 20. |
null | Sun M P, Li Z Q, Yao X J, et al, 2015.Modeling the hydrological response to climate change in a glacierized high mountain region, northwest China[J].Journal of Glaciology, 61(225): 127-136. |
null | Upadhyay D S, 1995.Cold climate hydrometeorology[M].New York: John Wiley and Sons Inc, 105-111. |
null | Wagner A J, 1957.Mean temperature from 1000 mb to 500 mb as a predictor of precipitation type[J].Bulletin of the American Meteorological Society, 38(10): 584-590. |
null | Wauben W, Mathijssen T, Oudshoorn C, 2016.Field evaluation of sensors for precipitation type discrimination[C].In Proceedings of the WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation (CIMO TECO 2016), Madrid, Spain, 27-30. |
null | Wolff M A, Isaksen K, Petersen-?verleir A, et al, 2015.Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study[J].Hydrology and Earth System Sciences, 19(2): 951-967. |
null | Yang D Q, 1988.Research on analysis and correction of systematic errors in precipitation measurement in Urumqi River Basin, Tianshan[D].Thesis, Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, Lanzhou, China, 169. |
null | Yang D Q, Goodison B E, Benson C, et al, 1998a.Adjustment of daily precipitation at 10 climate stations in Alaska: application of WMO Intercomparison results[J].Water Resources Research, 34(2): 241-256. |
null | Yang D Q, Goodison B E, Metcalfe J R, et al, 1998b.Accuracy of NWS 8" standard nonrecording precipitation gauge: results and application of WMO intercomparison[J].Journal of Atmospheric and Oceanic Technology, 15(1): 54-68. |
null | Ye B S, Yang D Q, Ding Y Z, et al, 2004.Abias-corrected precipitation climatology for China[J].Hydrometeor, 5: 1147-1160. |
null | Zhang G F, Li Z Q, Wang W B, et al, 2014b.Rapid decrease of observed mass balance in the Urumqi Glacier No.1, Tianshan Mountains, central Asia[J].Quaternary International, 349: 135-141. |
null | Zhang K X, Pan S M, Cao L G, et al, 2014a.Spatial distribution and temporal trends in precipitation extremes over the Hengduan Mountains region, China, from 1961 to 2012[J].Quaternary International, 349: 346-356. |
null | 陈仁升, 康尔泗, 丁永建, 2014.中国高寒区水文学中的一些认识和参数[J].水科学进展, 25(3): 307-317. |
null | 何晓波, 叶柏生, 丁永建, 2009.青藏高原唐古拉山区降水观测误差修正分析[J].水科学进展, 20(3): 403-408. |
null | 李忠勤, 2011.天山乌鲁木齐河源1号冰川近期研究与应用[M].北京: 气象出版社, 58-60. |
null | 刘俊峰, 陈仁升, 卿文武, 等, 2011.基于TRMM降水数据的山区降水垂直分布特征[J].水科学进展, 22(4): 447-454. |
null | 刘奇, 傅云飞, 2007.基于TRMM/TMI的亚洲夏季降水研究[J].中国科学D辑: 地球科学, 37(1): 111-122. |
null | |
null | 刘燕, 刘友存, 焦克勤, 等, 2019.1990年以来天山乌鲁木齐河上游水资源研究进展[J].冰川冻土, 41(4): 958-967. |
null | 孙美平, 姚晓军, 李忠勤, 等, 2014.天山东段冰雪消融与产汇流水文过程——以乌鲁木齐河源区为例[J].地理学报, 69(7): 945-957. |
null | |
null | |
null | 徐洪雄, 陈渭民, 杜波, 2010.4种当代天气现象仪自动观测分析的比较研究[J].农技服务, 27(11): 1489-1492. |
null | 杨大庆, 姜彤, 张寅生, 等, 1988.天山乌鲁木齐河源降水观测误差分析及其改正[J].冰川冻土, 10(4): 384-399. |
null | 杨大庆, 康尔泗, Felix B, 1992b.天山乌鲁木齐河源高山区的降水特征[J].冰川冻土, 14(3): 258-266. |
null | 杨大庆, 施雅风, 康尔泗, 等, 1991.Results of Solid Precipitation Measurement Intercomparison in the Alpine Area of Rumqi River Basin[J].中国科学通报(英文版), 36(13): 1105-1109. |
null | 杨大庆, 施雅风, 康尔泗, 等, 1992a.天山乌鲁木齐河流域降水观测系统误差分析和修正[C]//乌鲁木齐河山区水资源形成和估算[M].北京: 科学出版社, 14-40. |
null | 张正勇, 何新林, 刘琳, 等, 2015.中国天山山区降水空间分布模拟及成因分析[J].水科学进展, 26(4): 500-508. |
null | |
null | |