null | Andra D L, 1997. The origin and evolution of the WSR-88D mesocyclone recognition nomogram[C]// 28th Conference on Radar Meteorology, Austin, TX, American Meteorological Society, 364- 365. |
null | Bewster K A, Zrni? D S, 1986. Comparison of eddy dissipation rates from spatial spectra of Doppler velocities and Doppler spectrum widths[J]. Journal of Atmospheric & Oceanic Technology, 3( 3): 440- 452. |
null | Cornman L B, Williams J, Meymaris G, et al, 2003. Verification of an airborne Doppler radar turbulence detection algorithm[C]// Process sixth international symposium on tropospheric profiling needs and technologies, Leipzig, Germany, German Weather Service, 9- 11. |
null | Doswell III C A, 2001. Severe convective storms[M]. Boston: American Meteorological Society, 1- 525. |
null | Doviak R J, 2013. 多普勒雷达与气象观测[M]. 北京: 气象出版社, 291- 353. |
null | Frisch A S, Lenschow D H, Fairall C W, 1995. Doppler radar measurements of turbulence in marine stratiform cloud during ASTEX[J]. Journal of the Atmospheric Sciences, 52( 16): 2800- 2808. |
null | Hall M P M, Cherry S M, Goddard J W F, et al, 1980. Rain drop sizes and rainfall rate measured by dual-polarization radar[J]. Nature, 285( 5762): 195- 198. |
null | Hocking W K, Mu P K L, 1997. Upper and middle tropospheric kinetic energy dissipation rates from measurements of Cn-Review of theories, in-situ investigations, and experimental studies using the Buckland Park atmospheric radar in Australia[J]. Journal of Atmospheric & Solar Terrestrial Physics, 59( 14): 1779- 1803. |
null | Illingworth A J, Goddard J W F, Cherry S M, 1987. Polarization radar studies of precipitation development in convective storms[J]. Quarterly Journal of the Royal Meteorological Society, 113( 476): 469- 489. |
null | Istok M J, Doviak R J, 1986. Analysis of the relation between Doppler spectral width and thunderstorm turbulence[J]. Journal of the Atmospheric Sciences, 43( 20): 2199- 2214. |
null | Kumjian M R, Mishra S, Giangrande S E, et al, 2016. Polarimetric radar and aircraft observations of Baggy bands during bright[J]. Journal of Geophysical Research Atmospheres, 121( 7): 3584- 3607. |
null | Kumjian M R, Ryzhkov A V, Melnikov V M, et al, 2010. Observations of a cyclic supercell with a Rapid-scan super-dual-polarization WSR-88D[J]. Monthly Weather Review, 138( 10): 3762- 3786. |
null | Kumjian M R, Ryzhkov A V, 2008. Polarimetric signatures in supercell thunderstorms[J]. Journal of Applied Meteorology & Climatology, 47( 7): 1940- 1961. |
null | Lee J T, 1977.Application of Doppler radar to turbulence measurements which affect aircraft[P].Federal Aviation Administration Report, 127: 1939-1959. |
null | Lothon M, Lenschow D H, Leon D, et al, 2010. Turbulence measurements in marine stratocumulus with airborne Doppler radar[J]. Quarterly Journal of the Royal Meteorological Society, 131( 609): 2063- 2080. |
null | Melnikov V M, Doviak R J, 2002. Spectrum widths from echo power differences reveal meteorological features[J]. Journal of Atmospheric & Oceanic Technology, 19( 11): 1793- 1810. |
null | Melnikov V M, Doviak R J, 2008. Turbulence and wind shear in layers of large Doppler spectrum width in stratiform precipitation[J]. Journal of Atmospheric & Oceanic Technology, 26( 3): 430- 443. |
null | Picca J C, Ryzhkov A V, 2012. A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma city extreme hailstorm[J]. Monthly Weather Review, 140( 4): 1385- 1403. |
null | Ryzhkov A V, Kumjian M R, Ganson S M, et al, 2013. Polarimetric Radar characteristics of melting hail.Part I: Theoretical simulations using spectral microphysical modeling[J]. Journal of Applied Meteorology & Climatology, 52( 12): 2849- 2870. |
null | Snvder J C, Bluestein H B, Dawson ll D T, et al, 2017. Simulations of polarimetric, X-band radar signatures in supercells.Part II: Z DR columns and rings and K dp columns[J]. Journal of Applied Meteorology & Climatology, 56( 7): 2001- 2026. |
null | Snyder J C, Ryzhkov A V, Kumjian M R, et a1, 2015.A Z DR column detection algorithm to examine convective storm updralts[J]. Weather and Forecasting, 30( 6): 1819- 1844. |
null | 曹俊武, 刘黎平, 2007. 双线偏振雷达判别降水粒子类型技术及其检验[J]. 高原气象, 26( 1): 116- 127. |
null | |
null | 刁秀广, 郭飞燕, 2021. 2019年8月16日诸城超级单体风暴双偏振参量结构特征分析[J]. 气象学报, 79( 2): 1- 15. |
null | |
null | 刁秀广, 朱君鉴, 刘志红, 2009. 三次超级单体风暴雷达产品特征及气流结构差异性分析[J]. 气象学报, 67( 1): 133- 146. |
null | 黄琴, 魏鸣, 胡汉峰, 2018. 晴空回波的大气风温湿结构及双偏振雷达参量分析[J]. 气象, 44( 4): 526- 537. |
null | 莱赫特曼, 1982. 大气边界层物理学[M]. 北京: 科学出版社, 1- 394. |
null | 李柏, 2011. 天气雷达及其应用[M]. 北京: 气象出版社, 243- 256. |
null | 林文, 张深寿, 罗昌荣, 等, 2020. 不同强度强对流云系S波段双偏振雷达观测分析[J]. 气象, 46( 1): 63- 72 |
null | 卢晓光, 夏冬, 2011. 基于统计置信度的湍流检测门限确定方法[J]. 中国民航大学学报, 29( 4): 27- 30. |
null | 潘佳文, 蒋璐璐, 魏鸣, 等, 2020a. 一次强降水超级单体的双偏振雷达观测分析[J]. 气象学报, 78( 1): 86- 100 |
null | 潘佳文, 魏鸣, 郭丽君, 等, 2020b. 闽南地区大冰雹超级单体演变的双偏振特征分析[J]. 气象, 46( 12): 1608- 1620. |
null | 王炳赟, 魏鸣, 范广洲, 等, 2018. 1522强台风“彩虹”螺旋雨带中衍生龙卷的超级单体演变与机理研究I: 谱宽和速度[J]. 热带气象学报, 34( 4): 472- 480. |
null | 王洪, 吴乃庚, 万齐林, 等, 2018. 一次华南超级单体风暴的S波段偏振雷达观测分析[J]. 气象学报, 76( 1): 92- 103. |
null | 俞小鼎, 2014. 关于冰雹的融化层高度 [J]. 气象, 40( 6): 649- 654. |
null | 张培昌, 戴铁丕, 杜秉玉, 等, 2001. 雷达气象学[M]. 北京: 气象出版社, 327- 373. |
null | 张培昌, 魏鸣, 黄兴友, 等, 2018. 双线偏振多普勒天气雷达探测原理与应用[M]. 北京: 气象出版社, 38- 49. |