null | Carey L D, Rutledge S A, 1998.Electrical and multiparameter radar observations of a severe hailstorm[J]. Geophysical Research, 103(3): 13979-14000.DOI: 10.1029/97JD02626 . |
null | Liu X S, Ye Z X, Shao X M, et al, 1989.Intracloud lightning discharges in the lower part of thunderstorm[J].Acta Meteorologica sinica, 3(2): 212-219. |
null | MacGorman D R, Burgess D W, Mazur V, et al, 1989.Lightning rates relative to tornadic storm evolution on 22 May 1981[J]. American Meteorological Society, 46(2): 221-251.DOI: 10.1175/1520-0469 . |
null | Mansell E R, MacGorman D R, Ziegler C L, et al, 2002.Simulated three-dimensional branched lightning in a numerical thunderstorm model[J]. Journal of Geophysical Research: Atmospheres, 107(D9): 1-12.DOI: 10.1029/2000JD000244 . |
null | Mansell E R, MacGorman D R, Ziegler C L, et al, 2005.Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J].Geophysical Research: Atmospheres, 110(D12): 1545-1555. |
null | Pawar S D, Gopalakrishnan V, Murugavel P, et al, 2017.Possible role of aerosols in the charge structure of isolated thunderstorms[J]. Atmospheric Research, 183: 331-340.DOI: 10.1016/j.atmosres.2016.09.016 . |
null | Pawar S D, Kamra A K, 2004.Evolution of lightning and the possible initiation/triggering of lightning discharges by the lower positive charge center in an isolated thundercloud in the tropics[J]. Journal of Geophysical Research: Atmospheres, 109(D2).DOI: 10. 1029/2003JD003735 . |
null | Qie X S, Kong X, Zhang G, et al, 2005a.The possible charge structure of thunderstorm and lightning discharges in northeastern verge of Qinghai Tibetan plateau[J]. Atmospheric Research, 76(1): 231-246.DOI: 10.1016/j.atmosres.2004.11.034 . |
null | Qie X S, Zhang T L, Chen C P, et al, 2005b.The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau[J]. Geophysical Research Letters, 32(5): 1-4.DOI: 10.1029/2004GL022162 . |
null | Qie X S, Zhang T L, Yan M H, et al, 2009. Electrical characteristics of thunderstorms in different plateau regions of China[J]. Atmospheric Research, 91(2/4): 244-249.DOI: 10.7522/j.issn.1000-0534(2009)05-1006-12 . |
null | Ruchs B R, Rutledge S A, Dolan B, 2018.Microphysical and kinematic processes associated with anomalous charge structure isolated convection[J]. Journal of Geophysical Research: Atmospheres, 123(12): 6505-6528.DOI: 10.1029/2017JD027540 . |
null | Saunders C P R, Keith W D, Mitzeva R P, 1991.The effect of liquid water on thunderstorm charging[J]. Journal of Geophysical Research: Atmospheres, 96(D6): 11007-11017.DOI: 10.1029/91JD00970 . |
null | Smith S B, LaDue J G, MacGorman D R, 2000.The relationship between cloud-to-ground lightning polarity and surface equivalent potential temperature during three tornadic outbreaks[J]. American Meteorological Society, 128: 3320-3328.DOI: 10.1175/1520-0493 . |
null | Tan Y B, Tao S C, Zhu B Y, 2006.Fine-resolution simulation of the channel structures and propagation features of intracloud lightning[J].Geophysical Research letters, 33(9): 1-4. |
null | Wang F, Deng X H, Zhang Y J, et al, 2019.Numerical simulation of the formation of a large lower positive charge center in a Tibetan plateau thunderstorm[J]. Journal of Geophysical Research, 124(16): 9560-9591.DOI: 10.1029/2018JD029676 . |
null | Williams E R, 1989.The tripole structure of thunderstorms[J]. Journal of Geophysical Research: Atmospheres, 94(D11): 13151-13167.DOI: 10.1029/JD094iD11p13151 . |
null | Williams E R, Boldi B, Matlin A, et al, 1999.The behavior of total lightning activity in severe Florida thunderstorms[J]. Atmospheric Research, 51(3): 245-265.DOI: 10.1016/S0169-8095(99)00011-3 . |
null | Williams E, Mushtak V, Rosenfeld D, et al, 2004.Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate[J]. Atmospheric Research, 76(1): 288-306.DOI: 10.1016/j.atmosres. 2004. 11.009 . |
null | Zhang Y J, Dong W S, Zhao Y, et al, 2004.Study of charge structure and radiation characteristic of intracloud discharge in thunderstorms of Qinghai‐Tibet Plateau[J]. Science in China (Earth Sciences), 47(S1): 108–114.DOI: 10.1360/04zd0012 . |
null | Ziegler C L, MacGorman D R, Dye J E, et al, 1991.A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm[J].Geophysical Research, 961(D7): 12833-12855. |
null | |
null | 郭凤霞, 王昊亮, 孙京, 等, 2015.积云模式下三维闪电分形结构的数值模拟[J].高原气象, 34(2): 535-544. |
null | |
null | 郭凤霞, 张义军, 言穆弘, 2007b.青藏高原那曲地区雷暴云电荷结构特征数值模拟研究[J].大气科学, 31(1): 28-36. |
null | 郭凤霞, 张义军, 言穆弘, 等, 2004, 环境温湿层结对雷暴云空间电荷结构的影响[J].高原气象, 23(5): 678-683. |
null | 郭凤霞, 张义军, 言穆弘, 等, 2007a.青藏高原雷暴云降水与地面电场的观测和数值模拟[J].高原气象, 26(2): 257-263. |
null | 郭凤霞, 张义军, 言穆弘, 等, 2010.雷暴云首次放电前两种非感应起电参数化方案的比较[J].大气科学, 34(2): 362-373. |
null | 孔凡铀, 黄美元, 徐华英, 1990.对流云中冰相过程的三维数值模拟I: 模式建立及冷云参数化[J].大气科学, 14: 441-453. |
null | 孔凡铀, 黄美元, 徐华英, 1991.对流云中冰相过程的三维数值模拟II: 繁生过程作用[J].大气科学, 15(6): 79-87. |
null | 李国平, 2002.青藏高原动力气象学[M].北京: 气象出版社, 102-110. |
null | 刘欣生, 郭昌明, 王才伟, 等, 1987.闪电引起的地面电场变化特征及雷暴云下部的正电荷层[J].高原气象, 45(4): 500-504. |
null | 郄秀书, 刘欣生, 张广庶, 等, 1998.甘肃中川雷暴的地闪特征[J].气象学报, 56(3): 313-321. |
null | 郄秀书, 袁铁, 谢毅然, 等, 2004.青藏高原闪电活动的时空分布特征[J].地球物理学报, 47(6): 997-1002. |
null | 邵选民, 刘欣生, 1987.云中闪电及云下部正电荷的初步分析[J].高原气象, 6(3): 317-325. |
null | 孙安平, 言穆弘, 张鸿发, 等, 2000.三维强风暴动力-电耦合数值模拟研究—模式的初步检验[ J].高原气象, 19(4): 435-440. |
null | 孙安平, 言穆弘, 张义军, 等, 2002a.三维强风暴动力-电耦合数值模拟研究Ⅰ: 模式及其电过程参数化方案[J].气象学报, 60(6): 722-731. |
null | 孙安平, 言穆弘, 张义军, 等, 2002b.三维强风暴动力-电耦合数值模拟研究Ⅱ: 电结构形成机制[J].气象学报, 60(6): 732-739. |
null | 孙安平, 张义军, 言穆弘, 2004.雷暴电过程对动力发展的影响研究[J].高原气象, 23(1): 26-32. |
null | 王才伟, 陈茜, 刘欣生, 等, 1987.雷雨云下部正电荷中心产生的电场[J].高原气象, 6(1): 65-74. |
null | 张廷龙, 2007b.青藏高原及毗邻地区的雷暴电学特征及其成因探讨[ D].北京: 中国科学院研究生院, 1-78. |
null | 张廷龙, 郄秀书, 言穆弘, 等, 2007a.青藏高原雷暴的闪电特征及其成因探讨[J].高原气象, 26(4): 774-782. |
null | 张廷龙, 郄秀书, 言穆弘, 等, 2009.中国内陆高原不同海拔地区雷暴电学特征成因的初步分析[J].高原气象, 28(5): 64-75. |
null | 赵阳, 张义军, 董万胜, 等, 2004.青藏高原那曲地区雷电特征初步分析[J].地球物理学报, 47(3): 405-410. |