null | Boehm M T, Lee S, 2003.The implications of tropical Rossby waves for tropical tropopause cirrus formation and for the equatorial upwelling of the Brewer-Dobson circulation[J].Journal of the Atmospheric Sciences, 60(2): 247-261. |
null | Chen B, Liu X, 2005.Seasonal migration of cirrus clouds over the Asian Monsoon regions and the Tibetan Plateau measured from MODIS/Terra[J].Geophysical Research Letters, 32(1): L01804. |
null | Comstock J M, Ackerman T P, Mace G G, 2002.Ground‐based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: cloud statistics and radiative impacts[J].Journal of Geophysical Research: Atmospheres, 107(D23): 4714. |
null | Eguchi N, Yokota T, Inoue G, 2007.Characteristics of cirrus clouds from ICESat/GLAS observations[J].Geophysical Research Letters, 34(9): L09810. |
null | Fueglistaler S, Dessler A E, Dunkerton T J, et al, 2009.Tropical tropopause layer[J].Reviews of Geophysics, 47(1): RG1004. |
null | Fujiwara M, Iwasaki S, Shimizu A, et al, 2009.Cirrus observations in the tropical tropopause layer over the western Pacific[J].Journal of Geophysical Research: Atmospheres, 114(D9): D09304. |
null | Fu R, Hu Y, Wright J S, et al, 2006.Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J].Proceedings of the National Academy of Sciences, 103(15): 5664-5669. |
null | Gao B C, Yang P, Guo G, et al, 2003.Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS instrument[J].IEEE Transactions on Geoscience and Remote Sensing, 41(4): 895-900. |
null | He Q S, Li C C, Ma J Z, et al, 2013.The properties and formation of cirrus clouds over the Tibetan Plateau based on summertime lidar measurements[J].Journal of the Atmospheric Sciences, 70(3): 901-915. |
null | He Q S, Ma J Z, Zheng X D, et al, 2020.Formation and dissipation dynamics of the Asian tropopause aerosol layer[J]. Environmental Research Letters, 16(1): 014015.DOI: 10.1088/1748-9326/abcd5d . |
null | Immler F, Krüger K, Fujiwara M, et al, 2008.Correlation between equatorial Kelvin waves and the occurrence of extremely thin ice clouds at the tropical tropopause[J].Atmospheric Chemistry and Physics, 8(14): 4019-4026. |
null | Jin M L, 2006.MODIS observed seasonal and interannual variations of atmospheric conditions associated with hydrological cycle over Tibetan Plateau[J].Geophysical Research Letters, 33(19): L19707. |
null | Li Q B, Jiang J H, Wu D L, et al, 2005.Convective outflow of South Asian pollution: a global CTM simulation compared with EOS MLS observations[J].Geophysical Research Letters, 32(14): L14826. |
null | Luo Y L, Zhang R H, Qian W M, et al, 2011.Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data[J].Journal of Climate, 24(8): 2164-2177. |
null | Noel V, Winker D M, Garrett T J, et al, 2007.Extinction coefficients retrieved in deep tropical ice clouds from lidar observations using a CALIPSO-like algorithm compared to in-situ measurements from the cloud integrating nephelometer during CRYSTAL-FACE[J].Atmospheric Chemistry and Physics, 7(5): 1415-1422. |
null | Pace G, Cacciani M, di Sarra A, et al, 2003.Lidar observations of equatorial cirrus clouds at Mahé Seychelles[J]. Journal of Geophysical Research: Atmospheres, 108(D8): 4236.DOI: 10. 1029/2002JD002710 . |
null | Pan L L, Munchak L A, 2011.Relationship of cloud top to the tropopause and jet structure from CALIPSO data[J].Journal of Geophysical Research: Atmospheres, 116(D12): D12201. |
null | Platt C M R, Yang S A, Austin R T, et al, 2002.LIRAD observations of tropical cirrus clouds in MCTEX.Part I: Optical properties and detection of small particles in cold cirrus[J].Journal of the Atmospheric Sciences, 59(22): 3145-3162. |
null | Prabhakara C, Kratz D P, Yoo J M, et al, 1993.Optically thin cirrus clouds: radiative impact on the warm pool[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 49(5): 467-483. |
null | Randel W J, Park M, Emmons L, et al, 2010.Asian monsoon transport of pollution to the stratosphere[J].Science, 328(5978): 611-613. |
null | Riihimaki L D, McFarlane S A, 2010.Frequency and morphology of tropical tropopause layer cirrus from CALIPSO observations: Are isolated cirrus different from those connected to deep convection?[J].Journal of Geophysical Research: Atmospheres, 115(D18): D18201. |
null | Sassen K, Wang Z E, Liu D, 2008.Global distribution of cirrus clouds from CloudSat/Cloud‐Aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements[J].Journal of Geophysical Research: Atmospheres, 113(D8): D00A12. |
null | Sunilkumar S V, Parameswaran K, 2005.Temperature dependence of tropical cirrus properties and radiative effects[J].Journal of Geophysical Research: Atmospheres, 110(D13): D13205. |
null | Wang P H, Minnis P, McCormick M P, et al, 1996.A 6‐year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985-1990) [J].Journal of Geophysical Research: Atmospheres, 101(D23): 29407-29429. |
null | Wang X, Boselli A, D’Avino L, et al, 2005.An algorithm to determine cirrus properties from analysis of multiple-scattering influence on lidar signals[J].Applied Physics B, 80(4): 609-615. |
null | Winker D M, Trepte C R, 1998.Laminar cirrus observed near the tropical tropopause by LITE[J].Geophysical Research Letters, 25(17): 3351-3354. |
null | Yang Y K, Zhao C F, Fan H, et al, 2020.Spatiotemporal distributions of cloud properties over China based on Himawari-8 advanced Himawari imager data[J]. Atmospheric Research, 240: 104927.DOI: 10.1016/j.atmosres.2020.104927 . |
null | Zhang F, Yu Q R, Mao J L, et al, 2020.Possible mechanisms of summer cirrus clouds over the Tibetan Plateau[J].Atmospheric Chemistry and Physics, 20(20): 11799-11808. |
null | Zhao C F, Chen Y Y, Li J M, et al, 2019.Fifteen‐year statistical analysis of cloud characteristics over China using Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations[J].International Journal of Climatology, 39(5): 2612-2629. |
null | 傅云飞, 张爱民, 刘勇, 等, 2008.基于星载测雨雷达探测的亚洲对流和层云降水季尺度特征分析[J].气象学报, 66(5): 730-746. |
null | 郭文杰, 姚志刚, 杨钧锋, 等, 2021.AIRS 观测资料研究全球平流层重力波特性[J].空间科学学报, 41(4): 609-616. |
null | |
null | |
null | 潘红林, 2017.基于 CloudSat/CALIPSO 卫星资料的南京地区卷云的物理特性分析[D].南京: 南京信息工程大学, 1-63. |
null | 谭瑞婷, 2018.CPR 探测的青藏高原和中国东部夏季多层云系特征[D].合肥: 中国科学技术大学, 1-79. |
null | |
null | 谢安, 陈隆勋, 村上多喜雄, 1988.地球向外长波辐射 (OLR) 资料所显示的热带环流季节特征和年际变化[J].海洋学报(中文版)(1): 38-45. |
null | 谢家旭, 李国平, 2021.重力波与对流耦合作用在一次山地突发性暴雨触发中的机理分析[J].大气科学, 45(3): 617-632. |
null | 谢劭峰, 王义杰, 黄良珂, 等, 2021.中国区域ERA5和MERRA-2再分析资料计算T_m的精度分析[J].大地测量与地球动力学, 41(8): 771-776. |
null | 杨亦萍, 董晓刚, 戴聪明, 2016.利用 MODIS 数据对北极夏季卷云特性的研究[J].红外与激光工程, 45(4): 432002-0432002. |
null | 张灵杰, 2010.青藏高原上空重力波的观测和模拟分析[D].北京: 中国气象科学研究院. |
null | 郑建宇, 刘东, 王志恩, 等, 2018.CloudSat/CALIPSO 卫星资料分析云的全球分布及其季节变化特征[J].气象学报, 76(3): 420-433. |
null | 周德平, 洪也, 王杨锋, 等, 2016.沙尘天气过程对沈阳大气冰核浓度与尺度分布的影响[J].中国沙漠, 36(6): 1672-1678. |