Temporal and Spatial Changes of Dust Aerosol over Qinghai-XizangTibetPlateau and Analysis on Its Source Regions

  • Bentao LI ,
  • Lei ZHANG ,
  • Yunshu ZHANG ,
  • Haotian ZHANG ,
  • Gefei LU
Expand
  • 1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,Gansu,China
    2. Collaborative Innovation Center for Western Ecological Safety,Lanzhou University,Lanzhou 730000,Gansu,China

Received date: 2022-08-02

  Revised date: 2022-11-16

  Online published: 2023-05-18

Cite this article

Bentao LI , Lei ZHANG , Yunshu ZHANG , Haotian ZHANG , Gefei LU . Temporal and Spatial Changes of Dust Aerosol over Qinghai-XizangTibetPlateau and Analysis on Its Source Regions[J]. Plateau Meteorology, 2023 , 42(3) : 564 -574 . DOI: 10.7522/j.issn.1000-0534.2022.00100

References

null
Adebiyi A A Kok J F2020.Climate models miss most of the coarse dust in the atmosphere[J].Science Advances6(15): eaaz9507.DOI: https: //doi.org/10.1126/sciadv.aaz9507 .
null
Charlson R J Schwartz S E Hales J M, et al, 1992.Climate Forcing by Anthropogenic Aerosols[J].Science255(5043): 423-430.DOI: https: //doi.org/10.1126/science.255.5043.423 .
null
Dickerson R R Li C Li Z Q, et al, 2007.Aircraft observations of dust and pollutants over northeast China: insight into the meteorological mechanisms of transport[J].Journal of Geophysical Research: Atmospheres, 112: D24S90.DOI: https: //doi.org/10. 1029/2007JD008999 .
null
Formenti P Schütz L Balkanski Y, et al, 2011.Recent progress in understanding physical and chemical properties of African and Asian mineral dust[J].Atmospheric Chemistry and Physics11(16): 8231-8256.DOI: https: //doi.org/10.5194/acp-11-8231-2011 .
null
Gkikas A Proestakis E Amiridis V, et al, 2021.ModIs Dust AeroSol (MIDAS): a global fine-resolution dust optical depth data set[J].Atmospheric Measurement Techniques14(1): 309-334.DOI: https: //doi.org/10.5194/amt-14-309-2021 .
null
Griffin D W2007.Atmospheric movement of microorganisms in clouds of desert dust and implications for human health[J].Clinical Microbiology Reviews20(3): 459-477.DOI: https: //doi.org/10.1128/cmr.00039-06 .
null
Kalnay E Kanamitsu M Kistler R, et al, 1996.The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American Meteorological Society77(3): 437-472.DOI: https: //doi.org/10. 1175/1520-0477(1996)077<0437: tnyrp>2.0.co; 2 .
null
Kok J F Adebiyi A A Albani S, et al, 2021a.Contribution of the world's main dust source regions to the global cycle of desert dust[J].Atmospheric Chemistry and Physics21(10): 8169-8193.DOI: https: //doi.org/10.5194/acp-21-8169-2021 .
null
Kok J F Adebiyi A A Albani S, et al, 2021b.Improved representation of the global dust cycle using observational constraints on dust properties and abundance[J].Atmospheric Chemistry and Physics21(10): 8127-8167.DOI: 10.5194/acp-21-8127-2021 .
null
Laskin A Wietsma T W Krueger B J, et al, 2005.Heterogeneous chemistry of individual mineral dust particles with nitric acid: a combined CCSEM/EDX, ESEM, and ICP-MS study[J].Journal of Geophysical Research: Atmospheres, 110: D10208.DOI: 10.1029/2004JD005206 .
null
Li L L Mahowald N M Miller R L, et al, 2021.Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty[J].Atmospheric Chemistry and Physics, 21: 3973-4005.DOI: https: //doi.org/10.5194/acp-21-3973-2021 .
null
Li Z Q2004.Aerosols and Climate: a Perspective over East Asia[C]//Zhu X, Li X F, Cai M, et al eds.Observation, Theory and Modeling of Atmospheric Variability. 501-525.
null
Monks P S Granier C Fuzzi S, et al, 2009.Atmospheric composition change-global and regional air quality[J].Atmospheric Environment43 (33): 5268-5350.DOI: https: //doi.org/10. 1016/j.atmosenv.2009.08.021 .
null
Moore J K Doney S C Lindsay K2004.Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model[J].Global Biogeochemical Cycles18(4).DOI: https: //doi.org/10.1029/2004GB002220 .
null
Ramanathan V Crutzen P J Kiehl J T, et al, 2001.Aerosols, climate, and the hydrological cycle[J].Science294(5549): 2119-2124.DOI: https: //doi.org/doi: 10.1126/science.1064034 .
null
Reynolds R Belnap J Reheis M, et al, 2001.Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source[J].Proceedings of the National Academy of Sciences98(13): 7123-7127.DOI: https: //doi.org/10.1073/pnas.121094298 .
null
Trochkine D Iwasaka Y Matsuki A, et al, 2003.Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically modified particles collected over Japan[J].Journal of Geophysical Research: Atmospheres108(D23): 8642.DOI: https: //doi.org/10.1029/2002JD003268 .
null
Winker D Vaughan M Hunt B2006.The CALIPSO mission and initial results from CALIOP[J].Proceedings of SPIE, 7: 1.DOI: https: //doi.org/10.1117/12.698003 .
null
Xu C Ma Y M Ma J H, et al, 2020.Spring dust mass flux over the Tibetan Plateau during 2007-19 and connections with North Atlantic SST variability[J], Journal of Climate33(22): 9691-9703.DOI: https: //doi.org/10.1175/JCLI-D-19-0481.1 .
null
Yang Y K Zhao C F Wang Q, et al, 2021.Aerosol characteristics at the three poles of the Earth as characterized by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations[J].Atmospheric Chemistry and Physics21(6): 4849-4868.DOI: https: //doi.org/10.5194/acp-21-4849-2021 .
null
Zhang L Tang C G Huang J P, et al, 2021.Unexpected high absorption of atmospheric aerosols over a western Tibetan Plateau site in summer[J].Journal of Geophysical Research: Atmospheres, 126: e2020JD033286.DOI: https: //doi.org/10.1029/2020JD033286 .
null
Zhao C F Yang Y K Fan H, et al, 2019.Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau[J].National Science Review7(3): 492-495.DOI: https: //doi.org/10.1093/nsr/nwz184 .
null
Zhao M Dai T Wang H, et al, 2021.Aerosol characteristics over the Tibetan Plateau simulated with a coupled aerosol-climate model (FGOALS-f3-L)[J].Atmospheric and Oceanic Science Letters, 14: 100031.DOI: 10.1016/j.aosl.2021.100031 .
null
Zhou M Y Chen Z Huang R H, et al, 1994.Effects of two dust storms on solar radiation in the Beijing-Tianjin area[J].Geophysical Research Letters21(24): 2697-2700.DOI: https: //doi.org/10.1029/94GL02585 .
null
陈怡璇, 王天河, 韩颖, 等, 2020.矿物沙尘与盐尘典型区气溶胶光学特性的对比分析[J].高原气象39(4): 859-869.DOI: 10. 7522/j.issn.1000-0534.2019.00048 .
null
段伯隆, 刘新伟, 郭润霞, 等, 2021."3·15"北方强沙尘暴天气成因分析[J].干旱气象39(4): 541-553.DOI: 10.11755/j.issn. 1006-7639(2021)-04-0541 .
null
胡秀清, 卢乃锰, 张鹏, 2007.利用静止气象卫星红外通道遥感监测中国沙尘暴[J].应用气象学报18(3): 266-275.DOI: 10. 11898/1001-7313.20070302 .
null
胡秀清, 张玉香, 邱康睦, 2003.采用辐照度基法对FY-1C气象卫星可见近红外通道进行绝对辐射定标[J].遥感学报7(6): 458-464. DOI: 10.3321/j.issn: 1007-4619.2003.06.005 .
null
黄建平, 刘玉芝, 王天河, 等, 2021.青藏高原及周边地区气溶胶, 云和水汽收支研究进展[J].高原气象40(6): 1225-1240.DOI: 10.7522/j.issn.1000-0534.2021.zk012 .
null
姜红, 何清, 曾晓青, 等, 2021.基于随机森林和卷积神经网络的FY-4A号卫星沙尘监测研究[J].高原气象40(3): 680-689. DOI: 10.7522/j.issn.1000-0534.2020.00060 .
null
蒋盈沙, 高艳红, 潘永洁, 等, 2019.青藏高原及其周边区域沙尘天气的时空分布特征[J].中国沙漠39(4): 83-91.DOI: 10. 7522/j.issn.1000-694X.2018.00094 .
null
李云, 2018.风云卫星在沙尘天气监测中的业务应用[J].卫星应用9(11): 24-28.DOI: 10.3969/j.issn.1674-9030.2018.11.008 .
null
罗敬宁, 徐喆, 亓永刚, 2015.基于风云三号卫星的全球沙尘遥感方法[J].中国沙漠35(3): 690-698.DOI: 10.7522/j.issn. 1000-694X.2014.00078 .
null
马鹏飞, 论珠群培, 张焱, 等, 2021.雅鲁藏布江中游江心洲, 河漫滩面积及其指示的沙源特征[J].中国沙漠41(3): 25-33.DOI: 10.7522/j.issn.1000-694X.2021.00006 .
null
马学谦, 郭学良, 刘娜, 等, 2021.青藏高原中东部气溶胶特征的飞机观测[J].应用气象学报32(6): 706-719.DOI: 10.11898/1001-7313.20210606 .
null
田甜, 马建中, 2021.青藏高原地区气溶胶直接辐射强迫的数值模拟研究[J].气候与环境研究26(4): 449-460.DOI: 10.3878/j.issn.1006-9585.2021.20131 .
null
吴浩, 许潇锋, 杨晓玥, 等, 2020.青藏高原及周边区域沙尘气溶胶三维分布和传输特征[J].环境科学学报40(11): 4081-4091.DOI: 10.13671/j.hjkxxb.2020.0139 .
null
吴硕秋, 马晓燕, 2020.利用风云四, MODIS及CALIPSO卫星资料分析西北沙尘过程的垂直和水平分布特征[J].环境科学学报40(8): 2892-2901.DOI: 10.13671/j.hjkxxb.2020.0093 .
null
夏祥鳌, 王明星, 2004.气溶胶吸收及气候效应研究的新进展[J].地球科学进展19(4): 630-635.DOI: 10.3321/j.issn: 1001-8166.2004.04.021 .
null
徐成鹏, 葛觐铭, 黄建平, 等, 2014.基于CALIPSO星载激光雷达的中国沙尘气溶胶观测[J].中国沙漠34(5): 1353-1362.DOI: 10.7522/j.issn.1000-694X.2013.00395 .
null
徐小红, 余兴, 朱延年, 等, 2021.气溶胶对中国中纬度夏季低层风速的影响[J].高原气象40(2): 367-373.DOI: 10.7522/j.issn.1000-0534.2020.00037 .
Outlines

/