null | Michel B, Ramseier R, 1971.Classification of river and lake ice[J]. Canadian Geotechnical Journal, 8(1): 36-45.DOI: 10.1139/t71-004 . |
null | Benson B J, Magnuson J J, Jensen O P, et al, 2011.Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855-2005)[J]. Climatic Change, 112(2): 299-323.DOI: 10.1007/s10584-011-0212-8 . |
null | Brown L C, Duguay C R, 2010.The response and role of ice cover in lake-climate interactions[J]. Progress in Physical Geography: Earth and Environment, 34(5): 671-704.DOI: 10.1177/0309133310375653 . |
null | Brutsaert W, 1975.On a derivable formula for longwave radiation from clear skies[J]. Water Resources Research, DOI: 10.1029/wr011i005p00742 . |
null | Cai Y, Ke C, Li X G, et al, 2019.Variations of lake ice phenology on the Tibetan Plateau from 2001 to 2017 based on MODIS data[J]. Journal of Geophysical Research: Atmospheres, 124(2): 825-843.DOI: 10.1029/2018jd028993 . |
null | Cai Y, Ke C Q, Duan Z, 2017.Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data[J]. Science of The Total Environment, 607-608: 120-131.DOI: 10.1016/j.scitotenv.2017.07.027 . |
null | Cao X W, Lu P, Lepp?ranta M, et al, 2021.Solar radiation transfer for an ice-covered lake in the central Asian arid climate zone[J]. Inland Waters, 11(1): 89-103.DOI: 10.1080/20442041.2020. 1790274 . |
null | Filazzola A, Blagrave K, Imrit M A, et al, 2020.Climate change drives increases in extreme events for lake ice in the Northern Hemisphere[J]. Geophysical Research Letters, 47(16).DOI: 10.1029/2020gl089608 . |
null | Grant L, Vanderkelen I, Gudmundsson L, et al, 2021.Attribution of global lake systems change to anthropogenic forcing[J]. Nature Geoscience, 14(9): 849-854.DOI: 10.1038/s41561-021-00833-x . |
null | Guo L N, Wu Y H, Zheng H X, et al, 2018.Uncertainty and variation of remotely sensed lake ice phenology across the Tibetan Plateau[J]. Remote Sensing, 10(8).DOI: 10.3390/rs10101534 . |
null | Guo L N, Zheng H X, Wu Y H, et al, 2020.Responses of lake ice phenology to climate change at Tibetan Plateau[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 3856-3861.DOI: 10.1109/jstars.2020.3006270 . |
null | Hodgkins G A, James I C, Huntington T G, 2002.Historical changes in lake ice-out dates as indicators of climate change in New England, 1850-2000[J]. International Journal of Climatology, 22(13): 1819-1827.DOI: 10.1002/joc.857 . |
null | Imrit M A, Sharma S, 2021.Climate change is contributing to faster rates of lake ice loss in lakes around the Northern Hemisphere[J]. Journal of Geophysical Research: Biogeosciences, 126(7).DOI: 10.1029/2020jg006134 . |
null | Kang S C, Xu Y W, You Q L, et al, 2010.Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 5(1).DOI: 10.1088/1748-9326/5/1/015101 . |
null | Kirillin G B, Shatwell T, Wen L, 2021.Ice-covered lakes of Tibetan Plateau as solar heat collectors.[J]. Geophysical Research Letters, 48(14).DOI: 10.1029/2021gl093429 . |
null | Kuang X X, Jiao J J, 2016.Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research: Atmospheres, 121(8): 3979-4007.DOI: 10.1002/2015jd024728 . |
null | Lazhu, Yang K, Hou J Z, et al, 2021.A new finding on the prevalence of rapid water warming during lake ice melting on the Tibetan Plateau[J]. Science Bulletin, 66(21): 2358-2361.DOI: 10. 1016/j.scib.2021.07.022 . |
null | Lazhu, Yang K, Wang J B, et al, 2016.Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 121(11): 7578-7591.DOI: 10.1002/2015jd024523 . |
null | Lepp?ranta M, 2010.Modelling the formation and decay of lake ice[C]//The Impact of Climate Change on European Lakes, 63-83.DOI: 10.1007/978-90-481-2945-4_5 . |
null | Lepp?ranta M, 2013.Land-ice interaction in the Baltic Sea[J]. Estonian Journal of Earth Sciences, 62(1).DOI: 10.3176/earth. 2013.01 . |
null | Lepp?ranta M, 2014.Interpretation of statistics of lake ice time series for climate variability[J]. Hydrology Research, 45(4/5): 673-683.DOI: 10.2166/nh.2013.246 . |
null | Lepp?ranta M, 2015.Freezing of lakes and the evolution of their ice cover[C]//: Springer Berlin Heidelberg. |
null | Li X Y, Ma Y J, Huang Y M, et al, 2016.Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Atmospheres, 121(16): 10, 470-410, 485.DOI: 10.1002/2016jd025027 . |
null | Li X Y, Yang X F, Ma Y J, et al, 2018a.Qinghai Lake Basin critical zone observatory on the Qinghai-Tibet Plateau[J]. Vadose Zone Journal, 17(1).DOI: 10.2136/vzj2018.04.0069 . |
null | Li Z G, Ao Y H, Lyu S H, et al, 2018b.Investigation of the ice surface albedo in the Tibetan Plateau lakes based on the field observation and MODIS products[J]. Journal of Glaciology, 64(245): 506-516.DOI: 10.1017/jog.2018.35 . |
null | Li Z G, Lyu S H, Wen L J, et al, 2020.Study of freeze-thaw cycle and key radiation transfer parameters in a Tibetan Plateau lake using LAKE2.0 model and field observations[J]. Journal of Glaciology, 67(261): 91-106.DOI: 10.1017/jog.2020.87 . |
null | Li Z G, Lyu S H, Zhao L, et al, 2015.Turbulent transfer coefficient and roughness length in a high-altitude lake, Tibetan Plateau[J]. Theoretical and Applied Climatology, 124(3-4): 723-735.DOI: 10.1007/s00704-015-1440-z . |
null | Lv Z M, Zhang S B, Jin J M, et al, 2019.Coupling of a physically based lake model into the climate forecast system to improve winter climate forecasts for the Great Lakes region[J]. Climate Dynamics, 53(9-10): 6503-6517.DOI: 10.1007/s00382-019-04939-2 . |
null | |
null | Noi P T, Kappas M, Degener J, 2016.Estimating daily maximum and minimum land air surface temperature using MODIS land surface temperature dat and ground truth data in Northern Vietnam[J]. Remote Sensing, 8(12): 1002.DOI: 10.3390/rs8121002 . |
null | Qi M M, Yao X J, Li X F, et al, 2019.Spatiotemporal characteristics of Qinghai Lake ice phenology between 2000 and 2016[J]. Journal of Geographical Sciences, 29(1): 115-130.DOI: 10.1007/s11442-019-1587-0 . |
null | QIU Y B, XIE P F, Lepp?ranta M, et al, 2019.MODIS-based daily lake ice extent and coverage dataset for Tibetan Plateau[J]. Big Earth Data, 3(2): 170-185.DOI: 10.1080/20964471.2019. 1631729 . |
null | Sharma S, Blagrave K, Magnuson J J, et al, 2019.Widespread loss of lake ice around the Northern Hemisphere in a warming world[J]. Nature Climate Change, 9(3): 227-231.DOI: 10.1038/s41558-018-0393-5 . |
null | Shirasawa K, Terzhevik A, Lepp?ranta M, 2010.Solar radiation and ice melting in Lake Vendyurskoe, Russian Karelia[J]. Hydrology Research, 41(1): 50-62.DOI: 10.2166/nh.2010.122 . |
null | |
null | Stepanenko V M, Repina I A, Ganbat G, et al, 2019.Numerical simulation of ice cover of Saline Lakes[J]. Izvestiya, Atmospheric and Oceanic Physics, 55(1): 129-138.DOI: 10.1134/s0001433819010092 . |
null | Vavrus S J, Wynne R H, Foley J A J L, et al, 1996.Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model[J]. Limnology and Oceanography, 41(5): 822-831.DOI: 10.4319/lo.1996.41. 5.0822 . |
null | Wang X X, Qiu Y B, Zhang Y X, et al, 2021.A lake ice phenology dataset for the Northern Hemisphere based on passive microwave remote sensing[J]. Big Earth Data, 1-19.DOI: 10.1080/20964471.2021.1992916 . |
null | Wen L J, Lyu S H, Kirillin G, et al, 2016.Air-lake boundary layer and performance of a simple lake parameterization scheme over the Tibetan highlands[J]. Tellus A: Dynamic Meteorology and Oceanography, 68(1).DOI: 10.3402/tellusa.v68.31091 . |
null | Woolway R I, Kraemer B M, Lenters J D, et al, 2020.Global lake responses to climate change[J]. Nature Reviews Earth & Environment, 1(8): 388-403.DOI: 10.1038/s43017-020-0067-5 . |
null | Zhang G Q, Yao T D, Xie H J, et al, 2020.Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms[J]. Earth-Science Reviews, 208: 103269.DOI: 10.1016/j.earscirev.2020.103269 . |
null | 曹晓云, 石明明, 2019.2019年青海湖完全封冻较去年提前 7天[EB/OL].青海省气象局.[2019-01-24] |
null | 曹娟, 姚晓军, 靳惠安, 等, 2021.基于实测与模拟的青海湖冰厚时空变化特征[J]. 湖泊科学, 33(2): 607-621.DOI: 10.18307/2021.0225 . |
null | |
null | 黄文峰, 2013.湖冰微结构及其对热、 力学参数影响的研究[D].大连: 大连理工大学. |
null | |
null | 李小雁, 2020.祁连山综合观测网: 青海湖流域地表过程综合观测网(青海湖湖面气象要素梯度观测系统-2019)[DB]//国家青藏高原科学数据中心.国家青藏高原科学数据中心. |
null | 李晓锋, 2018.基于MODIS数据的高原湖泊冰情遥感监测方法研究[D].兰州: 西北师范大学. |
null | 李志军, 刘春厚, 涛 张, 等, 1994.关于冻冰融冰度日法推算渤海冰厚的商榷[J].海洋环境科学, 13(2): 70-74. |
null | |
null | |
null | 青海省水利厅, 青海统计局, 2015.青海省第一次水利普查公报[J].青海统计, (10): 34-39. |
null | 宋爽, 2019.冰封期乌梁素海光热特性及冰下水体初级生产力研究[D].呼和浩特: 内蒙古农业大学. |
null | |
null | 汪关信, 2020.青海湖湖冰特征及其变化[D].兰州: 兰州大学. |
null | |
null | |
null | 张群慧, 2021.湖泊模型的发展及青藏高原湖泊热力过程数值模拟和预测[D].杨凌: 西北农林科技大学. |
null | 赵新, 2011.大型输水工程冰期输水能力与冰害防治控制研究[D].天津: 天津大学. |
null | 赵慧芳, 祝存兄, 曹晓云, 2019.青海湖完全解冻较去年推迟 8天[EB/OL].青海省气象局.[2019-04-24] |
null | |