The Impacts of Vapor Transport on Land-atmospheric Water & Heat Exchanges over the Yarlung Zangbo Grand Canyon Area

  • Qiang ZHANG ,
  • jun WEN ,
  • yiting YANG ,
  • dongyu JIA ,
  • wenhui LIU ,
  • yaling CHEN ,
  • xuancheng LU
Expand
  • 1. College of Atmospheric Sciences,Chengdu University of Information Technology/ Plateau Atmosphere & Environment Key Laboratory of Sichuan Province,Chengdu 610225,Sichuan,China
    2. College of Urban Environment,Lanzhou City University,Lanzhou 730070,Gansu,China
    3. Geographic Science Department of Beijing Normal University,Haidian District 100875,Beijing,China
    4. College of Marine Science,Sun Yat-Sen University,Zhuhai 519082,Guangdong,China

Received date: 2022-06-27

  Revised date: 2022-09-29

  Online published: 2023-05-18

Cite this article

Qiang ZHANG , jun WEN , yiting YANG , dongyu JIA , wenhui LIU , yaling CHEN , xuancheng LU . The Impacts of Vapor Transport on Land-atmospheric Water & Heat Exchanges over the Yarlung Zangbo Grand Canyon Area[J]. Plateau Meteorology, 2023 , 42(3) : 603 -618 . DOI: 10.7522/j.issn.1000-0534.2022.00091

References

null
Batjes N H2016.Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks[J].Geoderma, 269: 61-68.DOI: https: //doi.org/10. 1016/j.geoderma.2016.01.034 .
null
Boos W R Kuang Z2010.Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J].Nature463(7278): 218-222.DOI: https: //doi.org/10.1038/nature08707 .
null
Chen F Zhang Y2009.On the coupling strength between the land surface and the atmosphere: from viewpoint of surface exchange coefficients[J].Geophysical Research Letters36(10): 207-213.DOI: https: //doi.org/10.1029/2009GL037980 .
null
Dai Y Shangguan W Wei N, et al, 2019.A review of the global soil property maps for Earth system models[J].Soil5(2): 137-158.DOI: https: //doi.org/10.5194/soil-5-137-2019 .
null
Deng M Meng X Lyv Y, et al, 2020.Comparison of soil water and heat transfer modeling over the Tibetan Plateau using two Community Land Surface Model (CLM) versions[J].Journal of Advances in Modeling Earth Systems12(10): e2020MS002189.DOI: https: //doi.org/10.1029/2020MS002189 .
null
Dickinson R E Oleson K W Bonan G, et al, 2006.The Community Land Model and its climate statistics as a component of the Community Climate System Model[J].Journal of Climate19(11): 2302-2324.DOI: https: //doi.org/10.1175/JCLI3742.1.DOI: 10.7522/j.issn.1000-0534.2021.zk018 .
null
Gao Y Chen F Jiang Y2020.Evaluation of a convection-permitting modeling of precipitation over the Tibetan Plateau and its influences on the simulation of snow-cover fraction[J].Journal of Hydrometeorology21(7): 1531-1548.
null
Garratt J R Francey R J1978.Bulk characteristics of heat transfer in the unstable, baroclinic atmospheric boundary layer[J].Boundary-Layer Meteorology15(4): 399-421.
null
He J Yang K Tong W, et al.2020.The first high-resolution meteorological forcing dataset for land process studies over China[J].Scientific Data7(1): 25.DOI: 10.1038/S41597-020-0369-y .
null
Huffman G J Bolvin D T2013.TRMM and other data precipitation data set documentation[J].NASA, Greenbelt, USA, 28(2.3): 1.
null
Joyce R J Janowiak J E Arkin P A, et al, 2004.CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J].Journal of Hydrometeorology5(3): 487-503.
null
Kanda M Kanega M Kawai T, et al, 2007.Roughness lengths for momentum and heat derived from outdoor urban scale models[J].Journal of Applied Meteorology and Climatology46(7): 1067-1079.
null
Monteith J L2010.An empirical method for estimating long-wave radiation exchanges in the British Isles[J].Quarterly Journal of the Royal Meteorological Society87(372): 171-179.DOI: https: //doi.org/10.1002/qj.49708737206 .
null
Shangguan W Dai Y Duan Q, et al, 2014.A global soil data set for earth system modeling[J].Journal of Advances in Modeling Earth Systems6(1): 249-263.DOI: https: //doi.org/10.1002/2013MS000293 .
null
Task G S D2014.Global soil data products CD-ROM contents (IGBP-DIS)[DB].ORNL DAAC.[2022-05-30].DOI: https: //doi.org/10.3334/ORNLDAAC/565 .
null
Wang A Barlage M Zeng X, et al, 2014.Comparison of land skin temperature from a land model, remote sensing, and in situ measurement[J].Journal of Geophysical Research: Atmospheres119(6): 3093-3106.DOI: https: //doi.org/10.1002/2013JD021026 .
null
Wang S Ma Y2019.On the simulation of sensible heat flux over the Tibetan Plateau using different thermal roughness length parameterization schemes[J].Theoretical and Applied Climatology137(3): 1883-1893.DOI: 10.1007/s00704-018-2704-1 .
null
Xu X Lu C Shi X, et al, 2008.World water tower: An atmospheric perspective[J].Geophysical Research Letters35(20): L20815.DOI: https: //doi.org/10.1029/2008GL035867 .
null
Yan H Huang J He Y, et al, 2020.Atmospheric water vapor budget and its long‐term trend over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres125(23): e2020JD033297.
null
Yang K Koike T Ishikawa H, et al, 2008.Turbulent flux transfer over bare-soil surfaces: characteristics and parameterization[J].Journal of Applied Meteorology and Climatology47(1): 276-290.DOI: https: //doi.org/10.1175/2007JAMC1547.1 .
null
Yang K Rasmy M Rauniyar S, et al, 2007.Initial CEOP-based review of the prediction skill of operational general circulation models and land surface models[J].Journal of the Meteorological Society of Japan.Ser.II, 85: 99-116.DOI: https: //doi.org/10.2151/jmsj.85A.99 .
null
Zeng X Dickinson R E1998.Effect of surface sublayer on surface skin temperature and fluxes[J].Journal of climate11(4): 537-550.DOI: https: //doi.org/10.1175/1520-0442(1998)011<0537: EOSSOS>2.0.CO; 2 .
null
Zeng X Wang Z Wang A2012.Surface skin temperature and the interplay between sensible and ground heat fluxes over arid regions[J].Journal of Hydrometeorology13(4): 1359-1370.DOI: 10.1175/JHM-D-11-0117.1 .
null
陈亚玲, 文军, 刘蓉, 等, 2022.江河源区水汽输送与收支的时空演变特征分析[J].高原气象41(1): 167-176.DOI: 10.1111/j.1744-697X.2005.00028 .
null
高登义, 2008.雅鲁藏布江水汽通道考察研究[J].自然杂志30(5): 301-303.
null
赖欣, 范广洲, 华维, 等, 2021.青藏高原陆气相互作用对东亚区域气候影响的研究进展[J].高原气象40(6): 1263-1277.DOI: 10.7522/j.issn.1000-0534.2021.zk018 .
null
李宏毅, 肖子牛, 朱玉祥, 2018.藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征[J].高原气象37(4): 923-935.DOI: 10.7522/j.issn.1000-0534.2017.00097 .
null
李茂善, 阴蜀城, 刘啸然, 等, 2019.近10年青藏高原及其周边湍流通量变化的数值模拟[J].高原气象38(6): 1140-1148.DOI: 10.7522/j.issn.1000-0534.2018.00145 .
null
李文静, 罗斯琼, 郝晓华, 等, 2021.青藏高原东部不同季节积雪过程对地表能量和土壤水热影响的观测研究[J].高原气象40(3): 455-471.DOI: 10.7522/j.issn.1000-0534.2020.00001 .
null
梁宏, 2012.青藏高原大气水汽变化和对辐射影响的模拟[D].北京: 中国气象科学研究院.DOI: 10.1016/j.atmosres.2020.105418 .
null
梁晓, 戴永久, 2008.通用陆面模式对土壤质地和亮度的敏感性分析[J].气候与环境研究13(5): 585-597.DOI: 10.3878/j.issn.1006-9585.2008.05.01 .
null
陆宣承, 文军, 田辉, 等, 2020.若尔盖高寒湿地-大气间水热交换湍流通量的日变化特征分析[J].高原气象39(4): 719-728.DOI: 10.7522/j.issn.1000-0534.2019.00073 .
null
沈润平, 郭倩, 陈萍萍, 等, 2019.高分辨率大气强迫和植被功能型数据对青藏高原土壤温度模拟影响[J].高原气象38(6): 1129-1139.DOI: 10.7522/j.issn.1000-0534.2018.00159 .
null
苏有琦, 张宇, 宋敏红, 等, 2020.基于实测土壤属性CLM 4.5对青藏高原高寒草甸模拟性能的评估[J].高原气象39(6): 1295-1308.DOI: 10.7522/j.issn.1000-0534.2019.000136 .
null
王澄海, 杨凯, 张飞民, 等, 2021.青藏高原土壤冻融过程的气候效应: 进展和展望[J].高原气象40(6): 1318-1336.
null
徐可飘, 2020.青藏高原大气水汽含量及水汽输送特征研究[D].合肥: 中国科学技术大学.
null
徐祥德, 陶诗言, 王继志, 等, 2002.青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J].气象学报60(3): 257-266+385.DOI: 10.11676/qxxb2002.032 .
null
杨逸畴, 1999.雅鲁藏布大峡谷科学考察[J].科技导报1999(07): 51-54.DOI: 10.3321/j.issn: 1000-7857.1999.07.014 .
null
张强, 王蓉, 岳平, 等, 2017.复杂条件陆-气相互作用研究领域有关科学问题探讨[J].气象学报75(1): 39-56.DOI: 10.11676/qxxb2017.003 .
null
张强, 文军, 武月月, 等, 2022.雅鲁藏布大峡谷地区近地面-大气间水热交换特征分析[J].高原气象41(1): 153-166.DOI: 10.7522/j.issn.1000-0534.2021.00113 .
null
张文霞, 张丽霞, 周天军, 2016.雅鲁藏布江流域夏季降水的年际变化及其原因[J].大气科学40(5): 965-980.
null
赵阳, 2019.青藏高原大地形影响背景下对流结构及水汽输送特征对下游暴雨的影响机理[D].北京: 中国气象科学研究院.
null
周军, 1998.1994年8月亚洲季风区水汽的源汇分布和输送[J].热带气象学报14(1): 91-96.DOI: 10.1007/s00376-999-0032-1 .
null
周天军, 高晶, 赵寅, 等, 2019.影响“亚洲水塔”的水汽输送过程[J], 中国科学院院刊34(11): 1210-1219.
Outlines

/