null | |
null | Anil K K V, Pandithurai G, Leena P P, et al, 2016.Investigation of aerosol indirect effects on monsoon clouds using ground-based measurements over a high-altitude site in Western Ghats[J]. Atmospheric Chemistry and Physics, 16: 8423-8430.DOI: 10. 5194/acp-16-8423-2016 . |
null | Arabas S, Pawlowska H, Grabowski W, 2009.Effective radius and droplet spectral width from in-situ aircraft observations in trade-wind cumuli during RICO[J].Geophysical Research Letters, 36: L11803, DOI: 10.1029/2009GL038257. |
null | Berg L K, Berkowitz C M, Barnard J C, et al, 2011.Observations of the first aerosol indirect effect in shallow cumuli[J]. Geophysical Research Letters, 38: L03809.DOI: 10.1029/2010gl046047 . |
null | Brenguier J L, Burnet F, Geoffroy O, 2011.Cloud optical thickness and liquid water path-does the k coefficient vary with droplet concentration?[J]. Atmospheric Chemistry and Physics, 11: 9771-9786.DOI: 10.5194/acp-11-9771-2011 . |
null | Brenguier J, Chuang P, Fouquart Y, et al, 2000.An overview of the ACE-2 CLOUDYCOLUMN closure experiment[J]. Tellus B, 52(2): 815-827.DOI: 10.1034/j.1600-0889.2000.00047.x . |
null | Bulgin C E, Palmer P I, Thomas G E, et al, 2008.Regional and seasonal variations of the Twomey indirect effect as observed by the ATSR-2 satellite instrument[J]. Geophysical Research Letters, 35: L02811.DOI: 10.1029/2007gl031394 . |
null | Burnet F, Brenguier J L, 2007.Observational study of the entrainment-mixing process in warm convective clouds[J]. Journal of the Atmospheric Sciences, 64(6): 1995-2011.DOI: 10.1175/jas3928.1 . |
null | Cecchini M A, Machado L A, Andreae M O, et al, 2017.Sensitivities of Amazonian clouds to aerosols and updraft speed[J]. Atmospheric Chemistry and Physics, 17: 10037-10050.DOI: 10. 5194/acp-17-10037-2017 . |
null | Chandrakar K K, Cantrell W, Chang K, et al, 2016.Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions[J]. Proceedings of the National Academy of Sciences, 113: 14243-14248.DOI: 10.1073/pnas.1612686113 . |
null | |
null | Chen Y C, Christensen M, Xue L L, et al, 2012.Occurrence of lower cloud albedo in ship tracks[J]. Atmospheric Chemistry and Physics, 12: 8223–8235.DOI: 10.5194/acp-12-8223-2012 . |
null | Daum P, Liu Y G, McGraw R, et al, 2007.Microphysical properties of stratus/stratocumulus clouds during the 2005 marine stratus/stratocumulus experiment (MASE)[C].AGU Fall Meeting Abstracts. |
null | Deng Z Z, Zhao C S, Zhang Q, et al, 2009.Statistical analysis of microphysical properties and the parameterization of effective radius of warm clouds in Beijing area[J]. Atmospheric Research, 93(4): 888-896.DOI: 10.1016/j.atmosres.2009.04.011 . |
null | Desai N, Glienke S, Fugal J, et al, 2019.Search for microphysical signatures of stochastic condensation in marine boundary layer clouds using Airborne Digital Holography[J]. Journal of Geophysical Research: Atmospheres, 124: 2739-2752.DOI: 10. 1029/2018jd029033 . |
null | Fletcher N H, 2011.The physics of rainclouds[M].Cambridge: Cambridge University Press. |
null | Ghan S J, Easter R C, Chapman E G, et al, 2001.A physically based estimate of radiative forcing by anthropogenic sulfate aerosol[J]. Journal of Geophysical Research: Atmospheres, 106: 5279-5293.DOI: 10.1029/2000JD900503 . |
null | Grabowski W W, 1998.Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization[J]. Journal of the Atmospheric Sciences, 55: 3283-3298.DOI: 10.1175/1520-0469 . |
null | Grandey B, Stier P, 2010.A critical look at spatial scale choices in satellite-based aerosol indirect effect studies[J]. Atmospheric Chemistry and Physics, 10(23): 11459-11470.DOI: 10.5194/acp-10-11459-2010 . |
null | Guo X H, Lu C S, Zhao T L, et al, 2018.Observational study of the relationship between entrainment rate and relative dispersion in deep convective clouds[J]. Atmospheric Research, 199: 186-192.DOI: 10.1016/j.atmosres.2017.09.013 . |
null | Hudson J G, Noble S, Jha V, 2012.Cloud droplet spectral width relationship to CCN spectra and vertical velocity[J]. Journal of Geophysical Research: Atmospheres, 117: D11211.DOI: 10.1029/2012jd017546 . |
null | |
null | Jones A, Slingo A, 1996.Predicting cloud-droplet effective radius and indirect sulphate aerosol forcing using a general circulation model[J]. Quarterly Journal of the Royal Meteorological Society, 122(535): 1573-1595.DOI: 10.1002/qj.49712253506 . |
null | Kiehl J, Schneider T, Rasch P, et al, 2000.Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version3[J]. Journal of Geophysical Research: Atmospheres, 105(D1): 1441-1457.DOI: 10.1029/1999jd900495 . |
null | Koren I, Kaufman Y J, Rosenfeld D, et al, 2005.Aerosol invigoration and restructuring of Atlantic convective clouds[J]. Geophysical Research Letters, 32: L14828.DOI: 10.1029/2005GL023187 . |
null | Kumar B, Schumacher J, Shaw R A, 2014.Lagrangian mixing dynamics at the cloudy-clear air interface[J]. Journal of the Atmospheric Sciences, 71: 2564-2580.DOI: 10.1175/JAS-D-13-0294.1 . |
null | Lasher-Trapp S G, Cooper W A, Blyth A M, 2005.Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud[J]. Quarterly Journal of the Royal Meteorological Society, 131: 195-220.DOI: 10.1256/qj.03.199 . |
null | Li Z Q, Niu F, Fan J W, et al, 2011.Long-term impacts of aerosols on the vertical development of clouds and precipitation[J]. Nature Geoscience, 4(12): 888-894.DOI: 10.1038/ngeo1313 . |
null | Liu Y G, Daum P H, 2000.Spectral dispersion of cloud droplet size distributions and the parameterization of cloud droplet effective radius[J]. Geophysical Research Letters, 27(13): 1903-1906.DOI: 10.1029/1999gl011011 . |
null | Liu Y G, Daum P H, 2002.Anthropogenic aerosols: indirect warming effect from dispersion forcing[J]. Nature, 419(6907): 580-581.DOI: 10.1038/419580a . |
null | Liu Y G, Daum P H, 2004.Parameterization of the autoconversion process.Part I: analytical formulation of the Kessler-type parameterizations[J]. Journal of the Atmospheric Sciences, 61(13): 1539-1548.DOI: 10.1175/1520-0469(2004)061<1539: potapi>2.0.co; 2 . |
null | Liu Y G, Daum P H, Hallett J, 2002.A generalized systems theory for the effect of varying fluctuations on cloud droplet size distributions[J]. Journal of the Atmospheric Sciences, 59: 2279-2290.DOI: 10.1175/1520-0469(2002)059<2279: AGSTFT>2.0.CO; 2 . |
null | Liu Y G, Daum P H, McGraw R, et al, 2006a.Parameterization of the autoconversion process.Part II: Generalization of Sundqvist-type parameterizations[J]. Journal of the Atmospheric Sciences, 63(3): 1103-1109.DOI: 10.1175/jas3675.1 . |
null | Liu Y G, Daum P H, Yum S S, 2006b.Analytical expression for the relative dispersion of the cloud droplet size distribution[J]. Geophysical Research Letters, 33: L02810.DOI: 10.1029/2005GL024052 . |
null | |
null | Liu Y, Lu C S, Li W L, 2017.Skewness of cloud droplet spectrum and an improved estimation for its relative dispersion[J]. Meteorology and Atmospheric Physics, 129: 47-56.DOI: 10.1007/s00703-016-0458-9 . |
null | Lu C S, Liu Y G, Niu S J, et al, 2012.Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects[J]. Geophysical Research Letters, 39: L21808.DOI: 10.1029/2012gl053599 . |
null | Lu C S, Liu Y G, Yum S S, et al, 2020.Reconciling contrasting relationships between relative dispersion and volume-mean radius of cloud droplet size distributions[J]. Journal of Geophysical Research: Atmospheres, 125(9): e2019JD031868.DOI: 10. 1029/2019JD031868 . |
null | Lu C S, Niu S J, Liu Y G, et al, 2013.Empirical relationship between entrainment rate and microphysics in cumulus clouds[J]. Geophysical Research Letters, 40(10): 2333-2338.DOI: 10. 1002/grl.50445 . |
null | Lu M L, Conant W C, Jonsson H H, et al, 2007.The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus[J]. Journal of Geophysical Research: Atmospheres, 112: D10209.DOI: 1029/2006jd007985 . |
null | Lu M L, Feingold G, Jonsson H H, et al, 2008a.Aerosol-cloud relationships in continental shallow cumulus[J]. Journal of Geophysical Research: Atmospheres, 113: D15201.DOI: 10.1029/2007jd009354 . |
null | Lu M L, Feingold G, Jonsson H H, et al, 2008b.Aerosol-cloud relationships in continental shallow cumulus[J]. Journal of Geophysical Research: Atmospheres, 113: D15201.DOI: 10.1029/2007JD009354 . |
null | Lu M L, Seinfeld J H, 2006.Effect of aerosol number concentration on cloud droplet dispersion: a large-eddy simulation study and implications for aerosol indirect forcing[J]. Journal of Geophysical Research: Atmospheres, 111: D02207.DOI: 10.1029/2005JD006419 . |
null | Luo S, Lu C S, Liu Y G, et al, 2020.Parameterizations of entrainment-mixing mechanisms and their effects on cloud droplet spectral width based on numerical simulations[J]. Journal of Geophysical Research: Atmospheres, 125(22): e2020JD032972.DOI: 10.1029/2007JD009354 . |
null | Luo S, Lu C S, Liu Y G, et al, 2021.Consideration of initial cloud droplet size distribution shapes in quantifying different entrainment-mixing mechanisms[J]. Journal of Geophysical Research: Atmospheres, 126(13): e2020JD034455.DOI: 10. 1029/2020JD034455 . |
null | Ma J Z, Chen Y, Wang W, et al, 2010.Strong air pollution causes widespread haze-clouds over China[J]. Journal of Geophysical Research: Atmospheres, 115: D18204.DOI: 10.1029/2009JD013065 . |
null | |
null | Martins J A, Silva Dias M A F, 2009.The impact of smoke from forest fires on the spectral dispersion of cloud droplet size distributions in the Amazonian region[J]. Environmental Research Letters, 4: 015002.DOI: 10.1088/1748-9326/4/1/015002 . |
null | |
null | Morrison H, Grabowski W W, 2007.Comparison of bulk and bin warm-rain microphysics models using a kinematic framework[J]. Journal of the Atmospheric Sciences, 64: 2839-2861.DOI: 10.1175/JAS3980 . |
null | Nicholls S, Leighton J, 1986.An observational study of the structure of stratiform cloud sheets: Part I.Structure[J]. Quarterly Journal of the Royal Meteorological Society, 112(472): 431-460.DOI: 10.1002/qj.49711247209 . |
null | Pandithurai G, Dipu S, Prabh T V, et al, 2012.Aerosol effect on droplet spectral dispersion in warm continental cumuli[J]. Journal of Geophysical Research: Atmospheres, 117: D16202.DOI: 10.1029/2011jd016532 . |
null | Pawlowska H, Grabowski W W, Brenguier J L, 2006.Observations of the width of cloud droplet spectra in stratocumulus[J]. Geophysical Research Letters, 33: L19810.DOI: 10.1029/2006GL026841 . |
null | Peng Y R, Lohmann U, 2003.Sensitivity study of the spectral dispersion of the cloud droplet size distribution on the indirect aerosol effect[J]. Geophysical Research Letters, 30(10): 1507.DOI: 10.1029/2003GL017192 . |
null | Peng Y R, Lohmann U, Leaitch R, et al, 2007.An investigation into the aerosol dispersion effect through the activation process in marine stratus clouds[J]. Journal of Geophysical Research: Atmospheres, 112: D11117.DOI: 10.1029/2006JD007401 . |
null | |
null | Prabha T V, Patade S, Pandithurai G, et al, 2012.Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley[J]. Journal of Geophysical Research: Atmospheres, 117: D20205.DOI: 10.1029/2011JD016837 . |
null | Pruppacher H R, Klett J D, 2012.Microphysics of Clouds and Precipitation: Reprinted 1980[C].Springer Science & Business Media. |
null | Rauber R M, Stevens B, Ochs III H T, et al, 2007.Rain in shallow cumulus over the ocean: The RICO campaign[J]. Bulletin of the American Meteorological Society, 88: 1912-1928.DOI: 10. 1175/BAMS-88-12-1912 . |
null | Reutter P, Su H, Trentmann J, et al, 2009.Aerosol-and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN)[J]. Atmospheric Chemistry and Physics, 9: 7067-7080.DOI: 10.5194/acp-9-7067-2009 . |
null | Rosenfeld D, Rudich Y, Lahav R, 2001.Desert dust suppressing precipitation: A possible desertification feedback loop[J]. Proceedings of the National Academy of Sciences, 98(11): 5975-5980.DOI: 10.1073/pnas.101122798 . |
null | Rotstayn L D, Liu Y G, 2003.Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration[J]. Journal of Climate, 16: 3476-3481.DOI: 10.1175/1520-0442(2003)016<3476: SOTFIA>2.0.CO; 2 . |
null | Rotstayn L D, Liu Y G, 2005.A smaller global estimate of the second indirect aerosol effect[J]. Geophysical Research Letters, 32: L05708.DOI: 10.1029/2004GL021922 . |
null | Rotstayn L D, Liu Y G, 2009.Cloud droplet spectral dispersion and the indirect aerosol effect: Comparison of two treatments in a GCM[J]. Geophysical Research Letters, 36: L10801.DOI: 10. 1029/2009gl038216 . |
null | |
null | Slingo A, Schrecker H M, 1982.On the shortwave radiative properties of stratiform water clouds[J]. Quarterly Journal of the Royal Meteorological Society, 108: 407-426.DOI: 10.1002/qj. 49710845607 . |
null | Stocker T F, 2014.Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[C].Cambridge: Cambridge University Press. |
null | Su C W, Krueger S K, McMurtry P A, et al, 1998.Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds[J]. Atmospheric Research, 47: 41-58.DOI: 10.1016/S0169-8095(98)00039-8 . |
null | Tao W K, Chen J P, Li Z Q, et al, 2012.Impact of aerosols on convective clouds and precipitation[J]. Reviews of Geophysics, 50(2).DOI: 10.1029/2011RG000369 . |
null | Tas E, Koren I, Altaratz O, 2012.On the sensitivity of droplet size relative dispersion to warm cumulus cloud evolution[J]. Geophysical Research Letters, 39.DOI: 10.1029/2012gl052157 . |
null | Tas E, Teller A, Altaratz O, et al, 2015.The relative dispersion of cloud droplets: its robustness with respect to key cloud properties[J]. Atmospheric Chemistry and Physics, 15: 2009-2017.DOI: 10.5194/acp-15-2009-2015 . |
null | T?lle M H, Krueger S K, et al, 2014.Effects of entrainment and mixing on droplet size distributions in warm cumulus clouds[J]. Journal of Advances in Modeling Earth Systems, 6: 281-299.DOI: 10.1002/2012MS000209 . |
null | |
null | Wang F, Li Z Q, Zhao D L, et al, 2021a.An airborne study of the aerosol effect on the dispersion of cloud droplets in a drizzling marine stratocumulus cloud over eastern China[J]. Atmospheric Research, 105885.DOI: 10.1016/j.atmosres.2021.105885 . |
null | Wang J, Daum P H, Yum S S, et al, 2009.Observations of marine stratocumulus microphysics and implications for processes controlling droplet spectra: Results from the Marine Stratus/Stratocumulus Experiment[J]. Journal of Geophysical Research: Atmospheres, 114: D18210.DOI: 10.1029/2008JD011035 . |
null | Wang M Q, Peng Y R, Liu Y G, et al, 2020.Understanding cloud droplet spectral dispersion effect using empirical and semi-analytical parameterizations in NCAR CAM5.3[J]. Earth and Space Science, 7: e2020EA001276.DOI: 10.1029/2020EA001276 . |
null | Wang X F, Xue H W, Fang W, et al, 2011.A study of shallow cumulus cloud droplet dispersion by large eddy simulations[J]. Acta Meteorologica Sinica, 25(2): 166-175.DOI: 10.1007/s13351-011-0024-9 . |
null | Wang Y, Zhao C F, McFarquhar G M, et al, 2021b.Dispersion of droplet size distributions in supercooled non-precipitating stratocumulus from aircraft observations obtained during the Southern Ocean Cloud Radiation Aerosol Transport Experimental Study[J]. Journal of Geophysical Research: Atmospheres, 126: e2020JD033720.DOI: 10.1029/2020JD033720 . |
null | Wood R, Irons S, Jonas P R, 2002.How important is the spectral ripening effect in stratiform boundary layer clouds?Studies using simple trajectory analysis[J]. Journal of the Atmospheric Sciences, 59(18): 2681-2693.DOI: 10.1175/1520-0469(2002)059<2681: hiitsr>2.0.co; 2 . |
null | Xie X N, Liu X D, 2009.Analytical three-moment autoconversion parameterization based on generalized gamma distribution[J]. Journal of Geophysical Research: Atmospheres, 114: D17201.DOI: 10.1029/2008JD011633 . |
null | Xie X N, Liu X D, 2011.Effects of spectral dispersion on clouds and precipitation in mesoscale convective systems[J]. Journal of Geophysical Research: Atmospheres, 116: D06202.DOI: 10.1029/2010jd014598 . |
null | Xie X N, Liu X D, 2013.Analytical studies of the cloud droplet spectral dispersion influence on the first indirect aerosol effect[J]. Advances in Atmospheric Sciences, 30(5): 1313-1319.DOI: 10. 1007/s00376-0122141-5 . |
null | Xie X N, Zhang H, Liu X D, et al, 2017.Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1: impacts on aerosol indirect effects[J]. Atmospheric Chemistry and Physics, 17: 5877-5892.DOI: 10.5194/acp-17-5877-2017 . |
null | Yuan T L, Li Z Q, Zhang R Y, et al, 2008.Increase of cloud droplet size with aerosol optical depth: An observation and modeling study[J]. Journal of Geophysical Research: Atmospheres, 113: D04201.DOI: 10.1029/2007JD008632 . |
null | Yum S S, Hudson J G, 2005.Adiabatic predictions and observations of cloud droplet spectral broadness[J]. Atmospheric Research, 73: 203-223.DOI: 10.1016/j.atmosres.2004.10.006 . |
null | Yum S S, Wang J, Liu Y G, et al, 2015.Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project[J]. Journal of Geophysical Research: Atmospheres, 120: 5047-5069.DOI: 10.1002/2014JD022802 . |
null | Zhao C S, Tie X X, Brasseur G, et al, 2006.Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing[J]. Geophysical Research Letters, 33: L16809.DOI: 10.1029/2006GL026653 . |
null | |
null | 解小宁, 王昭生, 王红丽, 等, 2016.云微物理特性及云滴有效半径参数化: 一次降水层状云的飞机观测资料结果[J]. 地球环境学报, 7(1): 12-18.DOI: 10.7515/JEE201601002 . |
null | |
null | |
null | |
null | |
null | |
null | 余欣洋, 2018.黄山暖性云雾滴谱离散度与其数浓度相关特征研究[D].南京: 南京信息工程大学. |
null | |
null | |