Long-term Variation of Sensible Heat Flux over the Qinghai-Xizang Plateau from 1984 to 2020

  • Runzhi LEI ,
  • Ye YU ,
  • Guobin ZHOU ,
  • Jianglin LI ,
  • Yanfei LIU
Expand
  • 1. Department of Plateau Atmospheric Physics,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. University of Chinese Academy of Sciences,Beijing 100049,China
    3. Chongqing Meteorological Observatory,Chongqing 401147,China
    4. Pingliang Land Surface Process and Severe Weather Research Station,Chinese Academy of Sciences,Pingliang 744015,Gansu,China
    5. Gansu Land Surface Process and Severe Weather Observation and Research Station,Pingliang 744015,Gansu,China

Received date: 2023-01-03

  Revised date: 2023-03-19

  Online published: 2023-07-18

Cite this article

Runzhi LEI , Ye YU , Guobin ZHOU , Jianglin LI , Yanfei LIU . Long-term Variation of Sensible Heat Flux over the Qinghai-Xizang Plateau from 1984 to 2020[J]. Plateau Meteorology, 2023 , 42(4) : 833 -847 . DOI: 10.7522/j.issn.1000-0534.2023.00032

References

null
Chen L X Reiter E R Feng Z Q1985.The atmospheric heat source over the Tibetan Plateau: May-August 1979[J].Monthly Weather Review, 113: 1771-1790.DOI: 10.1175/1520-0493(1985)113<1771: TAHSOT> 2.0.CO; 2 .
null
Chu R Li M Islam A R M T, et al, 2019.Attribution analysis of actual and potential evapotranspiration changes based on the complementary relationship theory in the Huai River basin of eastern China[J].International Journal of Climatology39(10): 4072-4090.DOI: 10.1002/joc.6060 .
null
Duan A M Wu G X2008.Weakening Trend in the Atmospheric Heat Source over the Tibetan Plateau during Recent Decades.Part I: Observations[J].Journal of Climate21(13): 3149-3164.DOI: 10.1175/2007jcli1912.1 .
null
Duan A M Liu S Hu W, et al, 2022.Long-term daily dataset of surface sensible heat flux and latent heat release over the Tibetan Plateau based on routine meteorological observations[J].Big Earth Data6(4): 480-491.DOI: 10.1080/20964471.2022.2037203 .
null
Fan W W Ma W Q Hu Z Y, et al, 2021.Recovery of sensible heating and its elevation amplification over and around the Tibetan Plateau since 2000s[J].Theoretical and Applied Climatology146(1): 617-630.DOI: 10.1007/s00704-021-03737-3 .
null
Farr T G Rosen P A Caro E, et al, 2007.The Shuttle Radar Topography Mission[J].Reviews of Geophysics45(2): 361.DOI: 10. 1029/2005rg000183 .
null
Food and Agriculture Organization of the United Nations(FAO), 2018.青藏高原SRTM数字高程数据集(2000)[DB/OL].北京: 国家青藏高原科学数据中心.
null
Garratt J R1992.The atmospheric boundary layer[M].Cambridge: Cambridge University Press, 316.
null
Gui Y P Wang Q M Zhao Y, et al, 2021.Attribution analyses of reference evapotranspiration changes in China incorporating surface resistance change response to elevated CO2[J].Journal of Hydrology, 599: 0022-1694.DOI: 10.1016/j.jhydrol.2021.126387 .
null
Li C F Yanai M1996.The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast[J].Journal of Climate9(2): 358-375.DOI: 10.1175 /1520-0442(1996)009 <0358: TOAIVO>2.0.CO; 2 .
null
Ma Y M Hu Z Y Xie Z P, et al, 2020.A long-term (2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau[J].Earth System Science Data12(4): 2937-2957.DOI: 10.5194/essd-12-2937-2020 .
null
Monin A S Obukhov A M1954.Basic laws of turbulent mixing in the atmosphere near the ground[J].Tr Akad Nauk SSSR Geofiz Inst24(151): 163-187.
null
Roderick M L Rotstayn L D Farquhar G D, et al, 2007.On the attribution of changing pan evaporation[J].Geophysical Research Letters34(34): 251-270.DOI: 10.1029/2007gl031166 .
null
Tomé A R Miranda P M A2004.Piecewise linear fitting and trend changing points of climate parameters[J].Geophysical Research Letters31(2).DOI: 10.1029/2003gl019100 .
null
Wang H Li D L2019.Decadal variability in summer precipitation over eastern China and its response to sensible heat over the Tibetan Plateau since the early 2000s[J].International Journal of Climatology39(3): 1604-1617.DOI: 10.1002/joc.5903 .
null
Yang K Qin J Guo X F, et al, 2009.Method development for estimating sensible heat flux over the Tibetan Plateau from CMA Data[J].Journal of Applied Meteorology and Climatology48(12): 2474-2486.DOI: 10.1175/2009jamc2167.1 .
null
Zhang H X Li W P Li W J2019.Influence of late springtime surface sensible heat flux anomalies over the Tibetan and Iranian plateaus on the location of the south Asian high in early summer[J].Advances in Atmospheric Sciences36(1): 93-103.DOI: 10. 1007/s00376-018-7296-2 .
null
Zheng H X Liu C Liu X, et al, 2009.Assessing contributions to panevaporation trends in Haihe River Basin, China[J].Journal of Geophysical Research, 114(D24).DOI: 10.1029/2009jd012203 .
null
Zuo B Hou Z Zheng F, et al, 2020.Robustness Assessment of the RSD t-Test for Detecting Trend Turning in a Time Series[J].Earth and Space Science7(5).DOI: 10.1029/2019ea001042 .
null
Zuo B Li J Sun C, et al, 2019.A new statistical method for detecting trend turning[J].Theoretical and Applied Climatology138(1): 201-213.DOI: 10.1007/s00704-019-02817-9 .
null
陈隆勋, 朱乾根, 罗会邦, 等, 1991.东亚季风[M].北京: 气象出版社.
null
陈万隆, 翁笃鸣, 1984.关于青藏高原感热和潜热旬总量计算方法的初步研究.青藏高原气象科学实验文集(二)[M].北京: 科学出版社, 35-45.
null
曹雯, 段春锋, 申双和, 2015.1971-2010年中国大陆潜在蒸散变化的年代际转折及其成因[J].生态学报35(15): 5085-5094.DOI: 10.5846/stxb201309022184 .
null
车涛, 郝晓华, 戴礼云, 等, 2019.青藏高原积雪变化及其影响[J].中国科学院院刊34(11): 1247-1253.DOI: 10.16418/j.issn. 1000-3045.2019.11.007 .
null
陈萍, 李波, 2018.藏东南水汽输送特征分析及其影响[J].南方农业12(9): 124-125.DOI: 10.19415/j.cnki.1673-890x.2018.09.066 .
null
段安民, 肖志祥, 吴国雄, 2016.1979-2014年全球变暖背景下青藏高原气候变化特征[J].气候变化研究进展12(5): 374-381.
null
蒋元春, 李栋梁, 郑然, 2020.1971-2016年青藏高原积雪冻土变化特征及其与植被的关系[J].大气科学学报43(3): 481-494.
null
刘珂, 姜大膀, 2014.中国夏季和冬季极端干旱年代际变化及成因分析[J].大气科学38(2): 309-321.DOI: 10.3878/j.issn. 1006-9895.2013.12219 .
null
刘超, 刘屹岷, 刘伯奇, 2015.6种地表热通量资料在伊朗-青藏高 原地区的对比分析[J].气象科学35(4): 398-404.DOI: 10. 3969/2014jms.0038 .
null
赖欣, 范广洲, 华维, 等, 2021.青藏高原陆气相互作用对东亚区域气候影响的研究进展[J].高原气象40(6): 1263-1277.DOI: 10.7522/j.issn.1000- 0534.2021.zk018 .
null
马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象40(6): 1241-1262.DOI: 10.7522/j.issn.1000- 0534.2021.zk006 .
null
马俊杰, 李韧, 刘宏超, 等, 2020.青藏高原多年冻土区活动层水热特性研究进展[J].冰川冻土42(1): 195-204.
null
施晓晖, 徐祥德, 2006.中国大陆冬夏季气候型年代际转折的区域结构特征[J].科学通报51(17): 2075-2084.DOI: 10.3321/j.issn: 0023-074X.2006.17.017 .
null
魏凤英, 2007.现代气候统计诊断与预测技术[M].2版.北京: 气象出版社, 124.
null
吴国雄, 刘屹岷, 刘新, 等, 2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学29(1): 47-58.
null
王慧, 张璐, 石兴东, 等, 2021.2000年后青藏高原区域气候的一些新变化[J].地球科学进展36(8): 785-796.DOI: 10.11867/j.issn.1001-8166.2021.044 .
null
王慧, 张璐, 石兴东, 等, 2022.青藏高原中东部地表感热趋势转折特征的季节差异[J].大气科学46(1): 133-150.DOI: 10. 3878/j.issn.1006-9895.2105.21026 .
null
汪柳皓, 魏显虎, 张宗科 等, 2022.青藏高原地区植被指数变化及其与温湿度因子的关系[J].森林与环境学报42(2): 141-148.DOI: 10.13324/j.cnki.jfcf.2022.02.004 .
null
徐丽娇, 胡泽勇, 李婧华, 2012.那曲站与其相邻野外站气象要素的对比分析[J].高原气象21(4): 935-941.
null
解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象37(1): 28-42.DOI: 10. 7522/j.issn.1000-0534.2017.00019 .
null
叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社, 278.
null
阳坤, 郭晓峰, 武炳义, 2010.青藏高原地表感热通量的近期变化趋势[J].中国科学(地球科学)40(7): 923-932.DOI: 10. 1007/s11430-010-4036-6 .
null
于涵, 张杰, 刘诗梦, 2019.青藏高原地表非绝热加热模态及其与中国北方环流异常的联系[J].高原气象38(2): 237-252.DOI: 10.7522/j.issn.1000-0534.2018.00079 .
null
于威, 刘屹岷, 杨修群, 等, 2018.青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析[J].高原气象37 (5): 1161-1176.DOI: 10.7522/j.issn.1000-0534.2018.00027 .
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10. 7522/j.issn.1000-0534.2021.00117 .
null
张镱锂, 2019.青藏高原边界数据总集[DB/OL].国家青藏高原科学数据中心.DOI: 10.11888/Geogra.tpdc.270099 .
null
张镱锂, 李炳元, 郑度, 2014.《论青藏高原范围与面积》一文数据的发表: 青藏高原范围界线与面积地理信息系统数据[J].全球变化科学研究数据出版系统.DOI: 10.3974/geodb.2014.01.12.v1.http: //www.geodoi.ac.cn/doi.aspx
null
张镱锂, 李炳元, 刘林山, 等, 2021a.再论青藏高原范围[J].地理研究40(6): 1543-1553.
null
张镱锂, 刘林山, 李炳元, 等, 2021b.青藏高原范围数据集2021年版与2014年版比较[J].全球变化数据学报5(4): 32-42.DOI: 10.3974/geodp.2021.04.04.CSTR: 20146.14.2021.04.04 .
null
张镱锂, 刘林山, 李炳元, 等, 2021c.青藏高原界线2021年版数据集[J/OL].全球变化数据仓储电子杂志.[2023-01-02]
null
张超, 田荣湘, 茆慧玲, 等, 2018.青藏高原中东部地区地表感热通量的时空变化特征[J].气候变化研究进展14(2): 127-136.
null
朱智, 师春香, 谷军霞, 等, 2020.近 10 a 来青藏高原地表温度时空变化特征分析[J].科学技术与工程20(10): 3828-3837.
Outlines

/