Improvement of Soil Freeze-thaw Parameterization on the Qinghai-Xizang(Tibet) Plateau and its Effect Comparison in BCC_CSM Climate Model
Received date: 2022-07-14
Revised date: 2023-01-17
Online published: 2023-09-26
Considering the important influence of freeze-thaw processes on land-air interactions, this paper couples an improved freeze-thaw parameterization scheme into the BCC_CSM2_MR model and conducts a one-year simulation experiment, dividing the simulation period into four stages: beginning of freezing, complete freezing, beginning of ablation and complete ablation according to the annual change of soil layer, and analyzing the soil temperature, soil temperature, near-surface wind field on the plateau and the meteorological elements of soil temperature, soil temperature, near-surface wind field and precipitation were analyzed.The results show that the new freeze-thaw scheme has good improvements for both shallow and deep soil temperatures, especially in the central part of the plateau.The improvement of the optimized freeze-thaw parameterization scheme for soil moisture is significant, and the root mean square error and bias of the new scheme are significantly reduced across the Tibetan Plateau in all four freeze-thaw periods, mainly in the central part of the plateau.The wind speed deviation in the northern and central parts of the plateau is reduced during the freezing and thawing phases, which is closer to the comparison data.The correlation coefficients have been improved.The results of the study show that the improved soil freeze-thaw parameterization scheme has a corresponding improvement over the original scheme in the BCC_CSM, and has a positive impact on the simulation of the climate and major circulation systems in China.
Fan YANG , Shihua LYU , Shaobo ZHANG , Yue XU , Pengfei XU , Huiqi YOU . Improvement of Soil Freeze-thaw Parameterization on the Qinghai-Xizang(Tibet) Plateau and its Effect Comparison in BCC_CSM Climate Model[J]. Plateau Meteorology, 2023 , 42(5) : 1093 -1106 . DOI: 10.7522/j.issn.1000-0534.2023.00002
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 陈渤黎, 罗斯琼, 吕世华, 等, 2014.黄河源区若尔盖站冻融期土壤温、 湿度的模拟与改进[J].高原气象, 33(2): 337-345.DOI: 10.7522/j.issn.1000-0534.2013.00085 . |
null | |
null | 董晴雪, 罗斯琼, 文小航, 等, 2022.近60年来藏东南降水变化及其对土壤温度与冻融过程的影响[J].高原气象, 41(2): 404-419.DOI: 10.7522/j.issn.1000-0534.2021.00065 . |
null | |
null | 李倩, 孙菽芬, 2007.通用的土壤水热传输耦合模型的发展和改进研究[J].中国科学: 地球科学, 37(11): 1522-1535.DOI: 10. 3321/j.issn: 1006-9267.2007.11.011 . |
null | 刘火霖, 胡泽勇, 杨耀先, 等, 2015.青藏高原那曲地区冻融过程的数值模拟研究[J].高原气象, 34(3): 676-683.DOI: 10.7522/j.issn.1000-0534.2015.00021 . |
null | 刘闻慧, 文军, 陈金雷, 等, 2022.青藏高原土壤冻融过程关键参量时空分布特征分析[J].高原气象, 41(1): 11-23.DOI: 10. 7522/j.issn.1000-0534.2021.00024 . |
null | 孙菽芬, 2005.陆面过程的物理、 生化机理和参数化模型[M].北京: 气象出版社. |
null | 王澄海, 尚大成, 2007.藏北高原土壤温、 湿度变化在高原干湿季转换中的作用[J].高原气象, 26(4): 677-685. |
null | 王澄海, 杨凯, 张飞民, 等, 2021.青藏高原土壤冻融过程的气候效应: 进展和展望[J].高原气象, 40(6): 1318-1336.DOI: 10. 7522/j.issn.1000-0534.2021.zk021 . |
null | 武月月, 文军, 王作亮, 等, 2022.黄河源高寒草原下垫面土壤冻融过程中陆-气间的水热交换特征分析[J].高原气象, 41(1): 132-142.DOI: 10.7522/j.issn.1000-0534.2021.00014 . |
null | 辛晓歌, 吴统文, 张洁, 2012.BCC气候系统模式开展的CMIP5试验介绍[J].气候变化研究进展, 8(5): 69-73.DOI: 10.3969/j.issn.1673-1719.2012.05.010 . |
null | 辛晓歌, 吴统文, 张洁, 等, 2019.BCC模式及其开展的CMIP6试验介绍[J].气候变化研究进展, 15(5): 533-539.DOI: 10. 12006/j.issn.1673-1719.2019.039 . |
null | 胥朋飞, 吕世华, 马翠丽, 等, 2022.BCC_AVIM陆面过程模式冻融过程参数化的改进与检验[J]. 高原气象, 41(2): 349-362.DOI: 10.7522/j.issn.1000-0534.2021.00121 . |
null | 徐洪亮, 常娟, 郭林茂, 等, 2021.青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J].高原气象, 40(2): 229-243.DOI: 10.7522/j.issn.1000-0534.2020.00071 . |
null | 杨梅学, 姚檀栋, |
null | 张宇, 宋敏红, 吕世华, 等, 2003.冻土过程参数化方案与中尺度大气模式的耦合[J].冰川冻土, 25(5): 541-546. |
null | 赵林, 程国栋, 李述训, 等, 2000.青藏高原五道梁附近多年冻土活动层冻结和融化过程[J].科学通报(11): 1205-1211.DOI: 10.3321/j.issn: 0023-074X.2000.11.018 . |
/
〈 |
|
〉 |