Improvement of Soil Freeze-thaw Parameterization on the Qinghai-XizangTibetPlateau and its Effect Comparison in BCC_CSM Climate Model

  • Fan YANG ,
  • Shihua LYU ,
  • Shaobo ZHANG ,
  • Yue XU ,
  • Pengfei XU ,
  • Huiqi YOU
Expand
  • 1. Sichuan Key Laboratory of Plateau Atmosphere and Environment,School of Atmospheric Sciences,Chengdu University of Information Engineering,Chengdu 610225,Sichuan,China
    2. Key Laboratory of Land Surface Processes and Climate Change in Cold and Arid Regions,Northwest Institute of Ecological Resources and Environment,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    3. Lanzhou University,Lanzhou 730000,Gansu,China

Received date: 2022-07-14

  Revised date: 2023-01-17

  Online published: 2023-09-26

Abstract

Considering the important influence of freeze-thaw processes on land-air interactions, this paper couples an improved freeze-thaw parameterization scheme into the BCC_CSM2_MR model and conducts a one-year simulation experiment, dividing the simulation period into four stages: beginning of freezing, complete freezing, beginning of ablation and complete ablation according to the annual change of soil layer, and analyzing the soil temperature, soil temperature, near-surface wind field on the plateau and the meteorological elements of soil temperature, soil temperature, near-surface wind field and precipitation were analyzed.The results show that the new freeze-thaw scheme has good improvements for both shallow and deep soil temperatures, especially in the central part of the plateau.The improvement of the optimized freeze-thaw parameterization scheme for soil moisture is significant, and the root mean square error and bias of the new scheme are significantly reduced across the Tibetan Plateau in all four freeze-thaw periods, mainly in the central part of the plateau.The wind speed deviation in the northern and central parts of the plateau is reduced during the freezing and thawing phases, which is closer to the comparison data.The correlation coefficients have been improved.The results of the study show that the improved soil freeze-thaw parameterization scheme has a corresponding improvement over the original scheme in the BCC_CSM, and has a positive impact on the simulation of the climate and major circulation systems in China.

Cite this article

Fan YANG , Shihua LYU , Shaobo ZHANG , Yue XU , Pengfei XU , Huiqi YOU . Improvement of Soil Freeze-thaw Parameterization on the Qinghai-XizangTibetPlateau and its Effect Comparison in BCC_CSM Climate Model[J]. Plateau Meteorology, 2023 , 42(5) : 1093 -1106 . DOI: 10.7522/j.issn.1000-0534.2023.00002

References

null
Clapp R B Hornberger G M1978.Empirical equations for some soil hydraulic properties [J].Water Resources Research14(4): 601-604.DOI: 10.1029/WR014i004p00601 .
null
Cosby B J Hornberger G M Clapp R B, et al, 1984.A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J].Water Resources Research20(6): 682-690.DOI: 10.1029/WR020i006p00682 .
null
Deng M S Meng X H Lyv Y Q, et al, 2020.Comparison of soil water and heat transfer modeling over the Tibetan Plateau using two community land surface model(CLM)versions[J].Journal of Advances in Modeling Earth Systems12(10): e2020MS002189.DOI: 10.1029/2020MS002189 .
null
Douville H Chauvin F2000.Relevance of soil moisture for seasonal climate predictions: a preliminary study[J].Climate Dynamics16(10/11): 719-736.DOI: 10.1007/s003820000080 .
null
Farouki O T1981.The thermal properties of soils in cold regions[J].Cold Regions Science and Technology5(1), 67-75.DOI: 10. 1016/0165-232X (81)90041-0 .
null
Guo D L Yang M X Wang H J2011.Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze /thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau[J].Environmental Earth Sciences63(1): 97-107.DOI: 10.1007/s12665-010-0672-6 .
null
Ji J J1995.A climate-vegetation interaction model: Simulating physical and biological processes at the surface[J].Journal of Biogeography22(2/3): 445-451.DOI: 10.2307/2845941 .
null
Ji J J Huang M Li K R2008.Prediction of carbon exchange between China terrestrial ecosystem and atmosphere in 21st century[J].Science in China(Series D: Earth Sciences)51(6): 885-898.DOI: 10.1007/s11430-008-0039-y .
null
Kozlowski T2009.Some factors affecting supercooling and the equilibrium freezing point in soil-water systems[J].Cold Regions Science and Technology59(1): 25-33.DOI: 10.1016/j.coldregions.2009.05.009 .
null
Kurylyk B L Watanabe K2013.The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils[J].Advances in Water Resources, 60: 160-177.DOI: 10.1016/j.advwatres.2013.07.016 .
null
Li W K Qiu B Guo W D, et al, 2019.Intraseasonal variability of Tibetan Plateau snow cover[J].International Journal of Climatology40(7): 3451-3466.DOI: 10.1002/joc.6407 .
null
Niu G Y Yang Z L2006.Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J].Journal of Hydrometeorology7(5): 937-952.DOI: 10.1175/JHM538.1 .
null
Oleson K W Niu G Y Yang Z L, et al, 2008.Improvements to the Community Land Model and their impact on the hydrological cycle[J].Journal of Geophysical Research: Solid Earth)113(G1): G01021-1-G01021-26-0.DOI: 10.1029/2007JG000563 .
null
Wu T W2012.A mass-flux cumulus parameterization scheme for largescale models: description and test with observations[J].Climate Dynamics38(3/4): 725-744.DOI: 10.1007/s00382-011-0995-3 .
null
Wu T W Yu R C Zhang F2008.A modified dynamic framework for atmospheric spectral model and its application[J].Journals of the Atmospheric Sciences(7): 2235-2253.DOI: 10.1175/2007JAS2514.1 .
null
Wu T W Yu R C Zhang F, et al, 2010.The Beijing Climate Center for Atmospheric General Circulation Model (BCC-AGCM2.0.1): description and its performance for the present-day climate[J].Climate Dynamics34(1): 123-147.DOI: 10.1007/s00382-008-0487-2 .
null
Xia K Luo Y Li W P2011.Simulation of freezing and melting of soil on the northeast Tibetan Plateau[J].Chinese Science Bulletin56(20): 2145-2155.DOI: 10.1007/s11434-011-4542-8 .
null
Yang K Wang C Li S2018.Improved simulation of frozen‐thawing process in land surface model (CLM4.5)[J].Journal of Geophysical Research: Atmospheres123(23): 238-258.DOI: 10. 1029/2017JD028260 .
null
Zhang X Sun S F Xue Y2007.Development and testing of a frozen soil parameterization for cold region studies[J].Journal of Hydrometeorology8(4): 690-701.DOI: 10.1175/JHM605.1 .
null
陈渤黎, 罗斯琼, 吕世华, 等, 2014.黄河源区若尔盖站冻融期土壤温、 湿度的模拟与改进[J].高原气象33(2): 337-345.DOI: 10.7522/j.issn.1000-0534.2013.00085 .
null
董敏, 吴统文, 王在志, 等, 2009.北京气候中心大气环流模式对季节内振荡的模拟[J].气象学报67(6): 912-922.DOI: 10. 11676/qxxb2009.089 .
null
董晴雪, 罗斯琼, 文小航, 等, 2022.近60年来藏东南降水变化及其对土壤温度与冻融过程的影响[J].高原气象41(2): 404-419.DOI: 10.7522/j.issn.1000-0534.2021.00065 .
null
何仲阳, 宋梦譞, 张兴, 2012.地表温度对风场模拟的影响[J].化工学报63(S1): 7-11.DOI: 10.3969/j.issn.0438-1157.2012.z1.002 .
null
李倩, 孙菽芬, 2007.通用的土壤水热传输耦合模型的发展和改进研究[J].中国科学: 地球科学37(11): 1522-1535.DOI: 10. 3321/j.issn: 1006-9267.2007.11.011 .
null
刘火霖, 胡泽勇, 杨耀先, 等, 2015.青藏高原那曲地区冻融过程的数值模拟研究[J].高原气象34(3): 676-683.DOI: 10.7522/j.issn.1000-0534.2015.00021 .
null
刘闻慧, 文军, 陈金雷, 等, 2022.青藏高原土壤冻融过程关键参量时空分布特征分析[J].高原气象41(1): 11-23.DOI: 10. 7522/j.issn.1000-0534.2021.00024 .
null
孙菽芬, 2005.陆面过程的物理、 生化机理和参数化模型[M].北京: 气象出版社.
null
王澄海, 尚大成, 2007.藏北高原土壤温、 湿度变化在高原干湿季转换中的作用[J].高原气象26(4): 677-685.
null
王澄海, 杨凯, 张飞民, 等, 2021.青藏高原土壤冻融过程的气候效应: 进展和展望[J].高原气象40(6): 1318-1336.DOI: 10. 7522/j.issn.1000-0534.2021.zk021 .
null
武月月, 文军, 王作亮, 等, 2022.黄河源高寒草原下垫面土壤冻融过程中陆-气间的水热交换特征分析[J].高原气象41(1): 132-142.DOI: 10.7522/j.issn.1000-0534.2021.00014 .
null
辛晓歌, 吴统文, 张洁, 2012.BCC气候系统模式开展的CMIP5试验介绍[J].气候变化研究进展8(5): 69-73.DOI: 10.3969/j.issn.1673-1719.2012.05.010 .
null
辛晓歌, 吴统文, 张洁, 等, 2019.BCC模式及其开展的CMIP6试验介绍[J].气候变化研究进展15(5): 533-539.DOI: 10. 12006/j.issn.1673-1719.2019.039 .
null
胥朋飞, 吕世华, 马翠丽, 等, 2022.BCC_AVIM陆面过程模式冻融过程参数化的改进与检验[J]. 高原气象41(2): 349-362.DOI: 10.7522/j.issn.1000-0534.2021.00121 .
null
徐洪亮, 常娟, 郭林茂, 等, 2021.青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J].高原气象40(2): 229-243.DOI: 10.7522/j.issn.1000-0534.2020.00071 .
null
杨梅学, 姚檀栋, Hirose N, 等, 2006.青藏高原表层土壤的日冻融循环[J].科学通报51(16): 1974-1976.DOI: 10.3321/j.issn: 0023-074X.2006.16.020 .
null
张宇, 宋敏红, 吕世华, 等, 2003.冻土过程参数化方案与中尺度大气模式的耦合[J].冰川冻土25(5): 541-546.
null
赵林, 程国栋, 李述训, 等, 2000.青藏高原五道梁附近多年冻土活动层冻结和融化过程[J].科学通报(11): 1205-1211.DOI: 10.3321/j.issn: 0023-074X.2000.11.018 .
Outlines

/