Influence of Different Water Vapor Sources on the Precipitation Processes on the Qinghai-Xizang (Tibet) Plateau in Summer
Received date: 2022-07-07
Revised date: 2022-10-09
Online published: 2023-09-26
Based on the knowledge that the main sources of summer water vapor on the Qinghai-Xizang (Tibet) Plateau are the Arabian Sea, the Bay of Bengal, and the South China Sea, a simulation study of the effects of different water vapor sources on the eastern-type and western-type precipitation on the Qinghai-Xizang (Tibet) Plateau in summer was carried out.Numerical simulations of water vapor content reduction at different water vapor source locations were conducted using conventional observations, NCEP/NCAR global reanalysis data, and the mesoscale numerical model WRF for two intense precipitation processes on the Qinghai-Xizang (Tibet) Plateau from June 28 to July 2, 2016 (eastern type) and from July 19 to 23, 2018 (western type), by separately integrating the Arabian Sea, Bay of Bengal, and South China Sea By comparing three sets of sensitivity experiment and control experiment, the relative humidity at the Arabian Sea, the Bay of Bengal and the South China Sea was reduced by 70%, 60%, 50%, 40% and 30% from the ground to 100hPa respectively, and the effects of the reduction of water vapor content at different water vapor sources on summer precipitation on the plateau were explored in depth from the perspectives of circulation field, water vapor transport and precipitation changes, and the following main conclusions were obtained: (1) The reduction of water vapor content at three water vapor sources has an effect on The reduction of water vapor over the Bay of Bengal significantly reduced the summer precipitation of the Qinghai-Xizang (Tibet) Plateau by about 10% in 2016 (eastern type) and 2018 (western type) compared with the controlled experiment, while the reduction of water vapor over the South China Sea had minimal effects on the two summer precipitation processes of the Qinghai-Xizang (Tibet) Plateau.Reducing the water vapor over the Arabian Sea plays a catalytic role in the precipitation of the western type of the plateau, increasing the precipitation by about 10% relative to the controlled test; and inhibiting the precipitation of the eastern type of the plateau, making the precipitation decrease by about 5% relative to the controlled test.(2) Changing the water vapor conditions over the Bay of Bengal source has the most obvious effect on the precipitation on the Qinghai-Xizang (Tibet) Plateau.The possible reason is that reducing the water vapor conditions over the Bay of Bengal makes the low value system on the southern side of the plateau weaken, and the southerly wind on the plateau weakens, resulting in weaker water vapor transport, resulting in less precipitation on the plateau.(3) The difference of water vapor revenue and expenditure in the plateau region was not obvious in the control experiment and three sensitivity experiment at the beginning of the simulation, but with the increase of simulation time (after about 48 h), there were obvious differences in water vapor revenue and expenditure in the Qinghai-Xizang (Tibet) Plateau, and there was an obvious correlation between water vapor revenue and expenditure and daily precipitation.
Changrui ZHU , Minhong SONG , Shaobo ZHANG , Longtengfei MA . Influence of Different Water Vapor Sources on the Precipitation Processes on the Qinghai-Xizang (Tibet) Plateau in Summer[J]. Plateau Meteorology, 2023 , 42(5) : 1129 -1143 . DOI: 10.7522/j.issn.1000-0534.2022.00092
null | |
null | |
null | |
null | 蔡英, 钱正安, 吴统文, 等, 2004.青藏高原及周围地区大气可降水量的分布、 变化与各地多变的降水气候[J].高原气象, 23(1): 1-10. |
null | 曾勇, 杨莲梅, 张迎新, 2017.新疆西部一次大暴雨过程水汽输送轨迹模拟[J].沙漠与绿洲气象, 11(3): 47-54.DOI: 10. 12057/j.issn.1002-0799.2017.03.007 . |
null | 曾钰婷, 张宇, 王煕曌, 等, 2022.2014 年夏季一次那曲强降水的诊断分析和水汽来源的模拟研究[J].高原气象, 41(2): 477-488.DOI: 10.7522/j.issn.1000-0534.2021.00077 . |
null | 曾钰婷, 张宇, 周可, 等, 2020.青藏高原那曲地区夏季水汽来源及输送特征分析[J].高原气象, 39(3): 467-476.DOI: 10.7522/j.issn.1000-0534.2019.00120 . |
null | 次仁达娃, 拥珠卓嘎, 仓啦, 等, 2016.南亚高压对西藏夏季降水的影响[J].西藏科技 (5): 67-69, 76. |
null | 德庆曲珍, 洛松卓玛, 高华, 等, 2021.WRF模式积云对流方案对拉萨市一次强降水的拟研究[J].西藏科技 (12): 12-17, 29. |
null | 董宏昌, 周虹, 姚瑞, 2021.云微物理方案在高原低涡个例模拟中的应用效果分析[J].沙漠与绿洲气象, 15(6): 9-17.DOI: 10. 12057/j.issn.1002-0799.2021.06.00 . |
null | 冯蕾, 周天军, 2015.高分辨率MRI模式对青藏高原夏季降水及水汽输送通量的模拟[J].大气科学, 39(2): 385-396.DOI: 10. 3878/j.issn.1006-9895.1406.14125 . |
null | 侯文轩, 华维, 郭艺媛, 等, 2020.青藏高原那曲地区一次对流云降水的数值模拟[J].高原山地气象研究, 40(3): 18-28, |
null | 黄建平, 刘玉芝, 王天河, 等, 2021.青藏高原及周边地区气溶胶、 云和水汽收支研究进展[J].高原气象, 40(6): 1225-1240.DOI: 10.7522/j.issn.1000-0534.2021.zk012 . |
null | 林厚博, 游庆龙, 焦洋, 等, 2016.青藏高原及附近水汽输送对其夏季降水影响的分析[J].高原气象, 35(2): 309-317.DOI: 10. 7522/j.issn.1000-0534.2014.00146 . |
null | 刘菊菊, 游庆龙, 王楠, 2019.青藏高原夏季云水含量及其水汽输送年际异常分析[J].高原气象, 38(3): 449-459.DOI: 10.7522/j.issn.1000-0534.2018.00138 . |
null | 刘煜, 刘蓉, 王欣, 等, 2022.基于拉格朗日方法评估青藏高原若尔盖地区水汽输送特征[J].高原气象, 41(1): 58-67.DOI: 10. 7522/ j.issn.1000-0534.2021.00100 . |
null | 鲁春霞, 王菱, 谢高地, 等, 2007.青藏高原降水的梯度效应及其空间分布模拟[J].山地学报, 25(6): 655 -663. |
null | 吕光辉, 于恩涛, 向伟玲, 等, 2009.WRF模式分辨率对新疆异常降雨天气要素模拟的影响[J].气候与环境研究, 14(1): 85-96. |
null | 索朗央金, 赵永丽, 次仁央金, 等, 2021.WRF模式对东亚夏季风的模拟评估[J].西藏科技, (12): 58-66, 80. |
null | 汤秋鸿, 刘宇博, 张弛, 等, 2020.青藏高原及其周边地区降水的水汽来源变化研究进展[J].大气科学学报, 43(6): 1002-1009. |
null | 王子谦, 段安民, 吴国雄, 2014.边界层参数化方案及海气耦合对WRF模拟东亚夏季风的影响[J].地球科学, 44(3): 548-562. |
null | 吴国雄, 毛江玉, 段安民, 等, 2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报, 62(5): 528-540. |
null | 吴国雄, 刘屹岷, 何编, 等, 2018.青藏高原感热气泵影响亚洲夏季风的机制 [J].大气科学, 42 (3): 488–504. |
null | 吴遥, 李跃清, 蒋兴文, 等, 2015.两种边界层参数化方案对WRF模拟青藏高原2013年夏季降水的影响[J].高原山地气象研究, 35(2): 7-16.DOI: 10.3969/j.issn.1674-2184 ·2015.02.002. |
null | 吴遥, 李跃清, 蒋兴文, 等, 2017.WRF模拟青藏高原东南部极端旱涝年降水的参数敏感性研究[J].高原气象, 36(3): 619-631.DOI: 10 , 7522/j.issn.1000-0534.2016.00057. |
null | 许建玉, 王慧娟, 李宏毅, 2014.夏季青藏高原地区水汽收支的初步模拟分析[J].高原气象, 33(5): 1173-1181.DOI: 10.522/j.issn.1000-0534.2013.0117 . |
null | 许鲁君, 刘辉志, 徐祥德, 等, 2018.WRF模式对青藏高原那曲地区大气边界层模拟适用性研究[J].气象学报, 76(6): 955-967. |
null | 杨显玉, 吕雅琼, 文军, 等, 2022.三江源区域夏季降水异常的水汽输送及源地特征的研究[J].高原气象, 41(2): 465-476.DOI: 10.7522/j.issn.1000-0534.2022.00015 . |
null | 姚檀栋, 朱立平, 2006.青藏高原环境变化对全球变化的响应及其适应对策[J].地球科学进展, 21(5): 459-464. |
null | 周长艳, 蒋兴文, 李跃清, 等, 2009.高原东部及邻近地区空中水汽资源的气候变化特征[J].高原气象, 28(1): 55-63. |
/
〈 |
|
〉 |