Effects of Seasonal Rainfall Characteristics on the Hydrothermal State of Permafrost Active Layer in the Central Qinghai-Xizang (Tibet) Plateau
Received date: 2022-10-23
Revised date: 2023-02-28
Online published: 2023-09-26
Rainfall can cause significant changes in the hydrothermal state within the active layer of the permafrost regions, and the rainfall in the Qinghai-Xizang (Tibet) Plateau has obvious seasonal characteristics.In order to analyze the effects of seasonal rainfall characteristics on the hydrothermal state of permafrost active layer, the meteorological data and the changes of soil heat flux, water content, and temperature within the active layer were monitored in the Beiluhe area of the central Qinghai-Xizang (Tibet) Plateau.The results show that the Beiluhe area is mainly characterized by the light rain events, supplemented by the moderate rain events, and the light rain events accounted for about 90% of the rainfall events from March to November.In addition, the heavy rain events and sustained rain events occur in summer and autumn, respectively.Among them, the rainfall events in each season leads to an overall decrease in surface net radiation, and the impact of the heavy rain events on the net radiation in summer is more obvious.The sustained rain events in autumn lead to a trend of first increase and then decrease in net radiation, and the change trend of soil heat flux consistent with changes in net radiation.Rainfall changes the soil heat flux by affecting the surface net radiation, thus causing changes in the water field and temperature field within soil.Among them, the heavy and moderate rain events in summer can significantly increase shallow soil water content, while spring and autumn rainfall have little effect on soil water content.The effect of the light rain events on soil temperature in each season can be ignored, but the moderate rain, heavy rain and sustained rain events can significantly alleviate the warming trend of shallow soil, and the effect of the rainfall events on alleviating soil warming gradually weakened with the increase of depth.The research results have certain guiding significance for solving regional ecological environment problems and engineering building disease prevention and control problems in permafrost regions.
Zhixiong ZHOU , Fengxi ZHOU , Mingli ZHANG , Bingbing LEI , Anjing MA . Effects of Seasonal Rainfall Characteristics on the Hydrothermal State of Permafrost Active Layer in the Central Qinghai-Xizang (Tibet) Plateau[J]. Plateau Meteorology, 2023 , 42(5) : 1172 -1181 . DOI: 10.7522/j.issn.1000-0534.2023.00017
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 蔡汉成, 金兰, 李勇, 等, 2018.降水对青藏高原风火山地区多年冻土的影响[J].铁道学报, 40(9): 104-110.DOI: 10.3969/j.issn.1001-8360.2018.09.015 . |
null | 陈爱军, 曹晓云, 韩琛惠, 等, 2018.2000~2016年青藏高原地表反照率时空分布及动态变化[J].气候与环境研究, 23(3): 355-365.DOI: 10.3878/j.issn.1006-9585.2017.17113 . |
null | 陈普晨, 李忠勤, 王璞玉, 等, 2023.高寒山区固态降水观测对比研究[J].高原气象, 42(1): 116-127.DOI: 10.7522/j.issn.1000-0534.2022.00021 . |
null | 丁旭, 赖欣, 范广洲, 2022.青藏高原春季土壤湿度异常与我国夏季降水的联系[J].高原气象, 41(1): 24-34.DOI: 10.7522/j.issn.1000-0534.2020.00094 . |
null | 范思睿, 范广洲, 董一平, 等, 2011.青藏高原四季划分方法探讨[J].高原山地气象研究, 31(2): 1-11. |
null | 韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6): 1477-1486.DOI: 10.7522/j.issn.1000-0534.2016.00125 . |
null | 冀钦, 杨建平, 陈虹举, 2018.1961-2015年青藏高原降水量变化综合分析[J].冰川冻土, 40(6): 1090-1099.DOI: 10.7522/j.issn.1000-0240.2018.0415 . |
null | 李德生, 温智, 张明礼, 等, 2017.降水对多年冻土活动层水热影响定量分析[J].干旱区资源与环境, 31(7): 108-113.DOI: 10. 13448/j.cnki.jalre.2017.221 . |
null | 李晓英, 姚正毅, 肖建华, 等, 2016.1961-2010年青藏高原降水时空变化特征分析[J].冰川冻土, 38(5): 1233-1240.DOI: 10. 7522/j.issn.1000-0240.2016.0144 . |
null | 梁宏, 刘晶淼, 李世奎, 2006.青藏高原及周边地区大气水汽资源分布和季节变化特征分析[J].自然资源学报, 21(4): 526-534+677.DOI: 10.3321/j.issn: 1000-3037.2006.04.004 . |
null | 林厚博, 游庆龙, 焦洋, 等, 2015.基于高分辨率格点观测数据的青藏高原降水时空变化特征[J].自然资源学报, 30(2): 271-281.DOI: 10.11849/zrzyxb.2015.02.010 . |
null | 刘娜, 熊安元, 张强, 等, 2023.青藏高原多源气象辐射数据整合与评估[J].高原气象, 42(1): 35-48.DOI: 10.7522/j.issn.1000-0534.2022.00012 . |
null | 卢鹤立, 邵全琴, 刘纪远, 等, 2007.近44年来青藏高原夏季降水的时空分布特征[J].地理学报, 62(9): 946-958.DOI: 10. 3321/j.issn: 0375-5444.2007.09.006 . |
null | 强耀辉, 王坤鑫, 马宁, 等, 2021.羌塘高原申扎高寒湿地辐射平衡和地表反照率特征[J].干旱区研究, 38(5): 1207-1215.DOI: 10.13866/j.azr.2021.05.02 . |
null | 王蕊, 李栋梁, 王慧, 等, 2023.青藏高原与中国西北干旱区地面感热季节增强时间的差异及相互关系[J].高原气象, 42(2): 283-293.DOI: 10.7522/j.issn.1000-0534.2022.00045 . |
null | |
null | 徐洪亮, 常娟, 郭林茂, 等, 2021.青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J].高原气象, 40(2): 229-243.DOI: 10.7522/j.issn.1000-0534.2020.00071 . |
null | 徐晓明, 吴青柏, 张中琼, 2017.青藏高原多年冻土活动层厚度对气候变化的响应[J].冰川冻土, 39(1): 1-8.DOI: 10.7522/j.issn.1000-0240.2017.0001 . |
null | 杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象, 41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117 . |
null | 张凤, 范成彦, 牟翠翠, 等, 2021.积雪对祁连山区黑河上游活动层热状态的影响研究[J].冰川冻土, 43(6): 1628-1640.DOI: 10.7522/j.issn.1000-0240.2021.0109 . |
null | 张明礼, 王斌, 王得楷, 等, 2021.降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J].冰川冻土, 43(4): 1092-1101.DOI: 10.7522/j.issn.1000-0240.2021.0073 . |
null | 张明礼, 温智, 董建华, 等, 2020.考虑降雨作用的多年冻土区不同地表土质活动层水热过程差异分析[J].岩土力学, 41(5): 1549-1559.DOI: 10.16285/j.rsm.2019.0297 . |
null | 张明礼, 温智, 薛珂, 等, 2016.降水对北麓河地区多年冻土活动层水热影响分析[J].干旱区资源与环境, 30(4): 159-164. |
null | 张文纲, 李述训, 庞强强, 2009.青藏高原40年来降水量时空变化趋势[J].水科学进展, 20(2): 168-176. |
null | 张中琼, 吴青柏, 刘永智, 等, 2015a.多年冻土区典型地面浅层地温对降水的响应[J].工程地质学报, 23(5): 948-953. |
null | 张中琼, 吴青柏, 温智, 等, 2015b.青藏高原北麓河地区沥青路面辐射特征分析[J].冰川冻土, 37(2): 408-416.DOI: 10.7522/j.issn.1000-0240.2015.0045 . |
null | 周波涛, 钱进, 2021.IPCC AR6报告解读: 极端天气气候事件变化[J].气候变化研究进展, 17(6): 713-718.DOI: 10.12006/j.issn.1673-1719.2021.167 . |
null | 周华云, 赵林, 田黎明, 等, 2019.基于Sentinel-1数据对青藏高原五道梁多年冻土区地面形变的监测与分析[J].冰川冻土, 41(3): 525-536.DOI: 10.7522/j.issn.1000-0240.2019.0072 . |
/
〈 |
|
〉 |