Analysis of the Qinghai-Xizang Plateau Ozone Valley of Stratospheric Formation Mechanism

  • Peng CHEN ,
  • Yongchi LI ,
  • Guole JING ,
  • Shujie CHANG
Expand
  • 1. College of Ocean and Meteorology,Guangdong Ocean University,Zhanjiang 524088,Guangdong,China
    2. Chinese Academy of Meteorological Sciences,Beijing 100081,China
    3. South China Sea Institute of Marine Meteorology,Guangdong Ocean University; Laboratory for Coastal Ocean Variation and Disaster Prediction,Key Laboratory of Climate; Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province,Zhanjiang 524088,Guangdong,China

Received date: 2022-05-06

  Revised date: 2022-12-08

  Online published: 2023-09-26

Abstract

Based on two ozone concentration data sets from the European Center for Medium-Range Weather Forecasts (ECMWF) 43a (from 1979 to 2021) and the National Aeronautics and Space Administration (NASA) 42a (from 1980 to 2021), combined with high pressure, mean sea surface temperature, and circulation field data from South Asia, this study examines the spatial and temporal distribution of ozone in the Upper Troposphere and Lower Stratosphere (UTLS) over the Qinghai-Xizang Plateau (QXP).The study found that ozone depletion occurs over the QXP in summer, forming a bicentric structure known as the QXP Ozone Valley.The study also shows that typical El Ni?o events contribute to ozone depletion in the UTLS region over the QXP, while typical La Ni?a events have the opposite effect, weakening ozone depletion.Under the influence of El Ni?o, a negative sea surface temperature (SST) anomaly forms in the western Pacific Ocean, generating a Rossby wave at 200 hPa height that transports westward to the Indian Ocean.This strengthens the Bay of Bengal trough behind the QXP, causing lower airflow to converge and rise, shifting air from the troposphere to the lower stratosphere.At the same time, southward pressure and high pressure strengthen, resulting in a smaller Total Column Ozone (TCO*) zonal deviation than the multi-year anomaly and a decrease in ozone content.In contrast, under the influence of La Ni?a, anomalous warming of the sea surface in the western Pacific Ocean causes air flow over the QXP to sink and wind field to blow from the stratosphere to the troposphere.The weakening of southern pressure high pressure leads to a larger TCO* value than the multi-year anomaly and an increase in ozone content.Therefore, El Ni?o enhances ozone depletion over the QXP, while La Ni?a weakens it.

Cite this article

Peng CHEN , Yongchi LI , Guole JING , Shujie CHANG . Analysis of the Qinghai-Xizang Plateau Ozone Valley of Stratospheric Formation Mechanism[J]. Plateau Meteorology, 2023 , 42(5) : 1182 -1193 . DOI: 10.7522/j.issn.1000-0534.2022.00106

References

null
Andreus D G Holton J R Leovy C B1987.Middle atmosphere dynamics[M].San Diego: Academic.
null
Bian J C Yan R C Chen H B, et al, 2011.Formation of the summertime ozone valley over the Tibetan Plateau: the Asian summer monsoon and air column variations[J].Advances in Atmospheric Sciences28 (6): 1318-1325.DOI: 10.1007/s00376-011-0174-9 .
null
Chang S J Shi C H Guo D, et al, 2021.Attribution of the principal components of the summertime Ozone Valley in the upper troposphere and lower stratosphere[J].Frontiers in Earth Science, 8: 605703.DOI: 10.3389/feart.2020.605703 .
null
Chang S J Li Y Shi C H, et al, 2022.Combined effects of the ENSO and the QBO on the Ozone Valley over the Tibetan Plateau[J].Remote Sensing14(19): 4935.DOI: 10.3390/rs14194935 .
null
Guo D Zhou X J Liu Y, et al, 2012.The dynamic effects of the South Asian High on the Ozone Valley over the Tibetan Plateau[J].Acta Meteorologica Sinica70(6): 1302-1311.DOI: 10. 1007/s13351-012-0207-2 .
null
Guo D Su Y C Shi C H, et al, 2015.Double core of Ozone Valley over the Tibetan Plateau and its possible mechanisms[J].Journal of Atmospheric and Solar-Terrestrial Physics, 130: 127-131.DOI: 10.1016/j.jastp.2015.05.018
null
Guo D Su Y C Zhou X J, et al, 2017.Evaluation of the trend uncertainty in summer Ozone Valley over the Tibetan Plateau in three reanalysis datasets[J].Journal of Meteorological Research31(2): 431-437.DOI: 10.1007/s13351-017-6058-x .
null
Liu Y Li W L Zhou X J, et al, 2003.Mechanism of formation of the Ozone Valley over the Tibetan Plateau in summer-transport and chemical process of ozone[J].Advances in Atmospheric Sciences20(1): 103-109.DOI: 10.1007/BF03342054 .
null
Newman P A Gleason J F Mcpeters R D, et al, 1997.Anomalously low ozone over the arctic[J].Geophysical Research Letters24(22): 2689-2692.DOI: 10.1029/97GL52831 .
null
Randel W J Polvani L Wu F, et al, 2017.Troposphere-stratosphere temperature trends derived from satellite data compared with ensemble simulations from WACCM[J].Journal of Geophysical Research: Atmospheres122(18), 9651-9667.DOI: 10.1002/2017jd027158 .
null
Tian W S Chipperfield M Huang Q2010.Effects of the Tibetan Plateau on total column ozone distribution[J].Tellus B60(4): 622-635.DOI: 10.1111/j.1600-0889.2008.00338.x .
null
Xia Y Huang Y Hu Y2018.On the climate impacts of upper tropospheric and lower stratospheric ozone[J].Journal of Geophysical Research: Atmospheres123(2): 730-739.DOI: 10.1002/2017jd027398 .
null
Zhang J K Tian W S Xie F, et al, 2019.Zonally asymmetric trends of winter total column ozone in the northern middle latitudes[J].Climate Dynamics, 52(7/8), 4483-4500.DOI: 10.1007/s00382-018-4393-y .
null
卞建春, 1997.青藏高原及其邻近地区流场结构季节性变化的特征分析[C]//中国地区大气臭氧变化及其对气候环境的影响会议.中国气象学会.
null
卞建春, 王庚辰, 陈洪滨, 等, 2006.2003年12月青藏高原上空出现微型臭氧洞[J].科学通报, (5): 606-609.DOI: 10.3321/j.issn: 0023-074X.2006.05.017 .
null
岑思弦, 陈文, 胡鹏, 等, 2021.南亚高压演变过程及其变异机制研究进展[J].高原气象40(6): 14.DOI: 10.7522/j.issn.1000-0534.2021.zk014 .
null
郭栋, 徐建军, 苏昱丞, 等, 2017.青藏高原和北美夏季臭氧谷垂直结构和形成机制的比较[J].大气科学学报40(3): 412-417.DOI: 10.13878/j.cnki.dqkxxb.20160315001 .
null
陆晏, 郭栋, 陶丽, 等, 2017.太阳准周期变化对北半球夏季平流层加热率的影响[J].大气科学学报40(6): 729-736.DOI: 10.13878/j.cnki.dqkxxb.20160124001 .
null
刘仁强, 黎颖, 付焱焱, 等, 2018.北半球极区平流层冬季12月与1-2月气候变化形势的对比[J].大气科学学报41(3): 7.DOI: 10.13878/j.cnki.dqkxxb.20160929001 .
null
刘煜, 李维亮, 周秀骥, 2001.青藏高原臭氧变化趋势的预测[J].中国科学, 31(增刊Ⅰ): 308-311.DOI: 10.1360/zd2001-31-S1-308 .
null
刘煜, 李维亮, 周秀骥, 2010.非均相化学过程在青藏高原臭氧低谷形成中的作用[J].气象学报, (6): 11.DOI: 10.11676/qxxb2010.079 .
null
李小婷, 田文寿, 谢飞, 等, 2019.中部型ENSO和平流层准两年振荡对冬季北半球平流层臭氧的联合调制作用[J].气象学报77(3): 456-474.DOI: 10.11676/qxxb2019.028 .
null
雷显辉, 宋敏红, 张少波, 2022.夏季南亚高压和西太副高活动特征指数与中国东部降水分布的联系[J].高原气象41(2): 13.DOI: 10.7522/j.issn.1000-0534.2021.00099 .
null
马耀明, 胡泽勇, 王宾宾, 等, 2021.青藏高原多圈层地气相互作用过程研究进展和回顾[J].高原气象40(6): 1241-1262.DOI: 10.3969/j.issn.1009-1742.2012.09.004 .
null
覃皓, 郭栋, 施春华, 等, 2018.南亚高压与邻近地区臭氧变化的相互作用[J].大气科学42(2): 421-434.DOI: 10.3878/j.issn.1006-9895.1710.17159 .
null
苏昱丞, 郭栋, 郭胜利, 等, 2016.未来百年夏季青藏高原臭氧变化趋势及可能机制[J].大气科学学报39(3): 9.DOI: 10. 13878/j.cnki.dqkxxb.20140925002 .
null
仕仁睿, 周顺武, 孙绩华, 等, 2017.青藏高原臭氧亏损变化及其对太阳活动的响应[J].云南大学学报: 自然科学版39(1): 10.DOI: 10.7540/j.ynu.20160536 .
null
万凌峰, 郭栋, 刘仁强, 等, 2017.WACCM3对夏季青藏高原臭氧谷的双心结构的模拟性能评估[J].高原气象36(1): 57-66.DOI: 10.7522/j.issn.1000-0534.2016.00004 .
null
汪明圣, 郭世昌, 2017.ENSO循环对东亚地区平流层臭氧分布的影响[J].高原气象36(3): 10.DOI: 10.7522/j.issn.1000-0534. 2016.00068 .
null
熊思章, 陈权亮, 2020.青藏高原上空臭氧的时空演变特征[J].成都信息工程大学学报35(6): 671-677.DOI: 10.16836/j.cnki.jcuit.2020.06.014 .
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10. 7522/j.issn.1000-0534.2021.0 .
null
周秀骥, 罗超, 李维亮, 等, 1995.中国地区臭氧总量变化与青藏高原低值中心[J].科学通报40(15): 1396-1398.DOI: 10. 1360/csb1995-40-15-1396 .
null
邹捍, 季崇萍, 周立波, 等, 2001.青藏高原臭氧的ENSO[J].气候与环境研究6(3): 267-272.DOI: 10.3969/j.issn.1006-9585. 2001.03.001 .
Outlines

/