Comprehensive Analysis of Flooding and Flooding Causing Precipitation Characteristics in Qinghai Province

  • Bingsong CHANG ,
  • Dongbei XU ,
  • Yihan DING ,
  • Ruotong YAN ,
  • Meijing LU
Expand
  • College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China

Received date: 2022-05-06

  Revised date: 2022-12-08

  Online published: 2023-09-26

Abstract

Using observed hourly precipitation data and disaster records of flooding in Qinghai, we adopt the ratio weight method to construct the disaster index of flood disaster events based on the direct economic loss, disaster-affected population, collapsed houses, agricultural economic loss and agricultural disaster area.According to the percentile method, flood disasters are graded into general, heavy, severe, and extra heavy.The disaster distribution characteristics and differences of the four ranks are analyzed and compared with the precipitation characteristics in Qinghai.Principal component analysis, box-whisker plot and correlation analysis are employed to investigate the main factors that lead to flood disasters in Qinghai and the differences among regions.Results show that flood disasters occur frequently, and losses caused by floods increase.The frequency of severe and extra heavy disasters increases significantly after 2016, and the periods of July and August are the most frequent periods of flood disasters in Qinghai every year.The eastern part of Qinghai is an area of frequent floods and the most serious disasters.The Hainan Prefecture has the most flooding frequency and the Haidong City suffers the most serious disaster losses.The flooding disasters in Qinghai are mainly induced by rainfall processes that are more serious than heavy rainfall.The process of flood-causing precipitation in Qinghai can divide into two categories, one is short-lived but has a high rainfall intensity, which has a rainfall duration of 12 h and can cause high accumulated precipitation.The other can also induce high accumulated precipitation, and its rainfall duration is generally longer than 12 h.The flood disasters occurring in eastern cities like Hainan, Huangnan, Haibei, Xining and Haidong are mainly induced by the first category of precipitation process mentioned above.The second category of rainfall process is mainly found in Haixi and Yushu Prefecture, and Huangnan, Haibei, Xining and Haidong are also affected by this precipitation process.The accumulated precipitation and 24 h precipitation are closely associated with flood disaster losses, and longer precipitation duration can further aggravate flood disaster losses.

Cite this article

Bingsong CHANG , Dongbei XU , Yihan DING , Ruotong YAN , Meijing LU . Comprehensive Analysis of Flooding and Flooding Causing Precipitation Characteristics in Qinghai Province[J]. Plateau Meteorology, 2023 , 42(5) : 1194 -1206 . DOI: 10.7522/j.issn.1000-0534.2022.00105

References

null
Duan A M Wu G X Zhang Q, et al, 2006.New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions[J].Chinese Science Bulletin51(11): 1396-1400.DOI: 10.1007/s11434-006-1396-6 .
null
Furl C Sharif H O Hassan A E, et al, 2015.Hydrometeorological analysis of tropical storm hermine and Central Texas flash flooding, September 2010[J].Journal of Hydrometeorology16(6): 2311-2327.DOI: 10.1175/JHM-D-14-0146.1 .
null
Gourley J J Flamig Z L Vergara H, et al, 2017.The flash project: improving the tools for flash flood monitoring and prediction across the United States[J].Bulletin of the American Meteorological Society98(2): 361-371.DOI: 10.1175/BAMS-D-15-00247.1 .
null
Hellweger F L Maidment D R1999.Definition and connection of hydrologic elements using geographic data[J].Journal of Hydrologic Engineering4(1): 10-18.
null
Marengo J A Torres R R Alves L M2017.Drought in Northeast Brazil: past, present, and future[J].Theoretical and Applied Climatology129(3): 1189-1200.
null
Shi J Cui L L2012.Characteristics of high impact weather and meteorological disaster in Shanghai, China[J].Natural Hazards60(3): 951-969.
null
Solaimani K Mohammadi H Habibnejad M Z A2005.Flood occurrence hazard forecasting based on geographical information system[J].International Journal of Environmental Science and Technology2(3): 253-258.
null
Wenzel F Zschau J2014.Early warning for geological disasters[M].Heidelberg: Springer Berlin Heidelberg, 1-12.
null
Zhao H J Ma F S Guo J2012.Regularity and formation, mechanism of large-scale abrupt karst collapse in southern China in the first half of 2010[J].Natural Hazards60(3): 1037-1054.
null
陈云峰, 高歌, 2010.近20年我国气象灾害损失的初步分析[J].气象36(2): 76-80.
null
房世波, 阳晶晶, 周广胜, 2011.30年来我国农业气象灾害变化趋势和分布特征[J].自然灾害学报20(5): 69-73.DOI: 10. 13577/j.jnd.2011.0511 .
null
郭慧, 黄涛, 邓茂芝, 等, 2007.甘肃天水地区45a来强降水与洪涝灾害特征分析[J].冰川冻土29(5): 808-812.
null
黄嘉佑, 2016.气象统计分析与预报方法(第4版)[M].北京: 气象出版社, 21-23.
null
黄卓, 黄远盼, 韦小雪, 等, 2018.利用HBV水文预报模型推算贺江流域洪水致灾临界雨量[J].气象科技46(4): 738-743.DOI: 10.19517/j.1671-6345.20170192 .
null
贾红莉, 杨英莲, 金义安, 等, 2019.1984~2017年青海省气象灾害灾情演变[J].青海科技26(2): 64-72.
null
金有杰, 曾燕, 邱新法, 等, 2014.人口与GDP空间化技术支持下的暴雨洪涝灾害承灾体脆弱性分析[J].气象科学34(5): 522-529.DOI: 10.3969 /2013jms.0030 .
null
寇丽娜, 边疆, 张婷婷, 等, 2017.基于GIS的信息量法在青海民和区域地质灾害易发性评价中的应用[J].西北地质50(2): 244-248.DOI: 10.19751/j.cnki.61-1149/p.2017.02.025 .
null
李琳, 朱秀芳, 孙章丽, 等, 2015.辽宁省暴雨洪涝灾害风险评估模型的建立与应用[J].北京师范大学学报(自然科学版)51(S1): 49-56.DOI: 10.16360/j.cnki.jbnuns.2015.s1.008 .
null
李梦婕, 汪明, 史培军, 2014.湖南暴雨洪涝灾害损失时空特征及影响因素分析[J].北京师范大学学报(自然科学版)50(4): 429-434.
null
李生辰, 张青梅, 沈晓燕, 等, 2022.青海高原暴雨的形成条件与基本特征分析[J].高原气象41(2): 526-540.DOI: 10.7522/j.issn.1000-0534.2021.00009 .
null
李万志, 余迪, 冯晓莉, 等, 2019.基于风险度的青海省暴雨洪涝灾害风险评估[J].冰川冻土41(3): 680-688.DOI: 10.7522/j.issn.1000-0240.2019.0033 .
null
廖春贵, 熊小菊, 胡宝清, 2017.基于GIS的广西暴雨洪涝灾害的时空特征与脆弱性评价[J].安徽农学通报23(5): 29-33.DOI: 10.16377/j.cnki.issn1007-7731.2017.05.010 .
null
刘彤, 闫天池, 2011.我国的主要气象灾害及其经济损失[J].自然灾害学报20(2): 90-95.DOI: 10.13577/j.jnd.2011.0214 .
null
罗生洲, 汪青春, 戴升, 2012.青海省气象灾害的若干气候特征分析[J].冰川冻土34(6): 1380-1387.
null
马伟东, 刘峰贵, 周强, 等, 2020.1961-2017年青藏高原极端降水特征分析[J].自然资源学报35(12): 3039-3050.DOI: 10.31497/zrzyxb.20201218 .
null
青海省气象科学研究所天气室, 1986.青海省汛期大到暴雨的分析及预报[J].青海气象, 3: 42-79.
null
王江山, 李锡福, 2004.青海天气气候[M].北京: 气象出版社, 225-226.
null
王晓东, 董炜华, 褚丽娟, 等, 2015.吉林西部旱涝灾害与降水对应关系的分析[J].灾害学30(4): 53-58.DOI: 10.3969 /j.issn. 1000-811X.2015.04.011 .
null
王秀琴, 王旭, 2021.1980—2019年新疆南部不同强度暴雨洪水灾害的空间分布和时间变化特征[J].冰川冻土43(6): 1818-1828.DOI: 10.7522/j.issn.1000-0240.2021.0032 .
null
吴吉东, 傅宇, 张洁, 等, 2014.1949—2013年中国气象灾害灾情变化趋势分析[J].自然资源学报29(9): 1520-1530.DOI: 10. 11849/zrzyxb.2014.09.007 .
null
谢五三, 宋阿伟, 田红, 2018.中小河流域暴雨洪涝灾害风险评估及效果检验[J].气象科学38(2): 264-270.DOI: 10.3969/2017jms.0074 .
null
严志涛, 李谢辉, 刘子堂, 等, 2021.气候变暖背景下西南四省市暴雨洪涝灾害风险变化[J].灾害学36(2): 200-207.DOI: 10. 3969/j.issn.1000-811X.2021.02.035 .
null
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象41(1): 1-10.DOI: 10. 7522/j.issn.1000-0534.2021.00117 .
null
杨昭明, 李万志, 冯晓莉, 等, 2019.气候变暖背景下青海汛期暴雨洪涝及次生灾害风险评估[J].中国农学通报35(3): 131-138.
null
杨昭明, 张调风, 2021.1961—2017年青藏高原东北部雨季降水量变化及其贡献度分析[J].干旱区研究38(1): 22-28.DOI: 10.13866/j.azr.2021.01.03 .
null
袁艺, 马玉玲, 2011.近30年我国自然灾害灾情时间分布特征分析[J].灾害学26(3): 65-68+82.
null
袁艺, 史培军, 刘颖慧, 等, 2003.土地利用变化对城市洪涝灾害的影响[J].自然灾害学报12(3): 6-13.
null
詹钱登, 李明熹, 2004.土石流发生降雨警戒值模式[J].中华水土保持学报35(3): 275-285.
null
张菡, 郭翔, 王锐婷, 等, 2013.四川省暴雨洪涝灾害风险区划研究[J].中国农学通报29(26): 165-171.
null
张杰, 吴明业, 2017.基于GIS的皖南地区暴雨洪涝灾害风险区划[J].中国农业资源与区划38(6): 121-129.DOI: 10.7621/cjarrp.1005-9121.20170617 .
null
张青梅, 李生辰, 苏永玲, 等, 2022.青海高原短时强降水时空分布及天气学概念模型[J].高原气象41(2): 515-525.DOI: 10. 7522/j.issn.1000-0534.2021.00068 .
null
张庆云, 陶诗言, 张顺利, 2003.夏季长江流域暴雨洪涝灾害的天气气候条件[J].大气科学27(6): 1018-1030.
null
张正涛, 高超, 刘青, 等, 2014.不同重现期下淮河流域暴雨洪涝灾害风险评价[J].地理研究33(7): 1361-1372.DOI: 10. 11821/dlyj201407015 .
null
赵东亮, 兰措卓玛, 侯光良, 等, 2021.青海省河湟谷地地质灾害易发性评价[J].地质力学学报27(1): 83-95.DOI: 10.12090/j.issn.1006-6616.2021.27.01.009 .
null
周伟, 唐川, 2013.汶川震区暴雨泥石流发生的降雨阈值[J].水科学进展24(6): 786-793.DOI: 10.14042/j.cnki.32.1309. 2013.06.013 .
null
周月华, 彭涛, 史瑞琴, 2019.我国暴雨洪涝灾害风险评估研究进展[J].暴雨灾害38(5): 494-501.DOI: 10.3969/j.issn.1004-9045.2019.05.011 .
Outlines

/