Comparative Analysis of Summer Extreme Rainstorm Characteristics between Western and Eastern Inner Mongolia

  • Ruiqing LI ,
  • Xiaolu HUANG ,
  • Guiying SONG ,
  • Linhui LI
Expand
  • 1. Inner Mongolia University,Hohhot 010021,Inner Mongolia,China
    2. Meteorological Observatory of Inner Mongolia Autonomous Region,Hohhot 010051,Inner Mongolia,China
    3. Inner Mongolia Meteorological Bureau,Hohhot 010051,Inner Mongolia,China

Received date: 2022-07-07

  Revised date: 2022-11-15

  Online published: 2023-09-26

Abstract

Under the background of global warming, summer extreme rainstorm events occurred frequently in Inner Mongolia.As an important ecological security barrier in northern China, the sensitivity of the climate change in this area is increasing.Based on the daily precipitation observation data of National Meteorological Station from 1981 to 2020 and China's first-generation Global Atmospheric Reanalysis product (CRA40), the variation regularity and dynamic factors of summer extreme rainstorm in Inner Mongolia in the past 40 years were studied.The conclusions are as follows: (1) The spatial distribution of summer precipitation in Inner Mongolia is gradually increasing from west to east, the difference between east and west is obvious, which is closely related to the distribution of the terrain.Hetao area and the southeast of Inner Mongolia are the areas with frequent rainstorm.In the past 40 years, the summer precipitation of most stations in the whole region were decreasing, and the significant decreasing stations of precipitation reached 36.44%.(2) The summer extreme rainstorm in Inner Mongolia mainly occurred in July and August and had obviously interannual variation.The frequency of extreme rainstorm decreased after 2000, but began to increase significantly after 2016.There have been 12 extreme rainstorm processes in the whole region in the past 40 years, which mainly affected the Hetao region in the west and the southeast region of Inner Mongolia.(3)During the extreme rainstorms happened in the Hetao region and the southeast, the large value area of dynamic factor basically coincides with the strong rainfall area, the dynamic factor of the precipitation area in the eastern region is significantly larger than that in the western region.The four dynamic factors had good indicative significance for typical extreme rainstorm process in southeast, but in typical extreme rainstorm process in west, the moist thermodynamic advection factors and the thermodynamic wave activity density performed better.(4) CRA40 reanalysis data showed that during the extreme rainstorm in the western and southeastern regions, the subtropical high was obviously stronger, and 500 hPa was affected by the circulation system with higher east and lower west, obviously water vapor channel was established between them also with significant water vapor convergence.Combined with the remarkable vertical ascending movement and the large value area of generalized potential temperature, meanwhile add the effect of the terrain that both lead to the improvement of precipitation efficiency, the extreme rainstorm events occurred.

Cite this article

Ruiqing LI , Xiaolu HUANG , Guiying SONG , Linhui LI . Comparative Analysis of Summer Extreme Rainstorm Characteristics between Western and Eastern Inner Mongolia[J]. Plateau Meteorology, 2023 , 42(5) : 1218 -1231 . DOI: 10.7522/j.issn.1000-0534.2022.00097

References

null
Gao S T Ran L K2009.Diagnosis of wave activity in a heavy-rainfall event [J].Journal of Geophysical Research, 114 (D8): D08119.
null
Wu X D Ran L K Chu Y L2011.Diagnosis of a moist thermodynamic advection parameter in heavy-rainfall events[J].Advances in Atmospheric Sciences28 (4): 957–972.
null
白美兰, 郝润全, 邸瑞琦, 等, 2006.内蒙古东部近54年气候变化对生态环境演变的影响[J].气象32(6): 31-36.
null
蔡敏, 张智, 2014.河套地区大雨以上降水日数的气候变化特征分析[J].暴雨灾害33(4): 401-406.
null
常煜, 2015.内蒙古5-9月小时强降水时空变化特征[J].中国沙漠35(3): 735-743.
null
陈子凡, 王磊, 李谢辉, 等, 2022.西南地区极端降水时空变化特征及其与强ENSO事件的关系[J].高原气象41(3): 604-616.DOI: 10.7522/j.issn.1000-0534.2022.00004 .
null
德勒格日玛, 李一平, 韩经纬, 等, 2014.2012年7月下旬河套地区4次切变暴雨的对比分析[J].中国沙漠34(1): 233-243.
null
冯克鹏, 田军仓, 沈晖, 2017.近半个世纪河套地区极端降水事件的气候特征[J].干旱区研究34(6): 1230-1239.
null
高守亭, 冉令坤, 李娜, 等, 2013.集合动力因子暴雨预报方法研究[J].暴雨灾害32(4): 289-302.
null
高守亭, 冉令坤, 李小凡, 2015.大气中尺度动力学基础及暴雨动力预报方法[M].北京: 气象出版社.
null
高守亭, 周玉淑, 冉令坤, 2018.我国暴雨形成机理及预报方法研究进展[J].大气科学42(4): 833-846.
null
黄子立, 吴小飞, 毛江玉, 2021.CMIP6模式水平分辨率对模拟我国西南地区夏季极端降水的影响评估[J].高原气象40(6): 1470-1483.DOI: 10.7522/j.issn.1000-0534.2021.zk010 .
null
卢珊, 胡泽勇, 付春伟, 等, 2022.黄土高原夏季极端降水及其成因分析[J].高原气象41(1): 241-254.DOI: 10.7522/j.issn. 1000-0534.2021.00027 .
null
李琴, 杨帅, 崔晓鹏, 等, 2016.四川暴雨过程动力因子指示意义与预报意义研究[J].大气科学40(2): 341-356.
null
李瑞青, 2018.集合动力因子在内蒙古暴雨预报中的适用性分析[J].内蒙古气象 (5): 3-7.
null
李潇, 李栋梁, 张莉萍, 2015.河套及其邻近地区汛期降水的变频特征[J].高原气象34(5): 1301-1309.DOI: 10.7522/j.issn. 1000-0534.2014.00142 .
null
刘林春, 刘炜, 孙鑫, 等, 2020.内蒙古河套地区极端降水特征分析[J].干旱气象38(4): 535-542.
null
柳志慧, 李瑞青, 2020.2018年内蒙古河套地区一次强降水过程分析及动力因子释用[J].内蒙古气象(2): 3-9.
null
骆凯, 李耀东, 秦丽, 2010.一次华北暴雨过程的数值模拟及水汽过程分析[J].暴雨灾害29(4): 307-314.
null
马素艳, 韩经纬, 斯琴, 等, 2015.长生命史冷涡背景下内蒙古地区强对流天气分析[J].高原气象34(5): 1435-1444.DOI: 10. 7522/j.issn.1000-0534.2014.00098 .
null
牛立强, 陈长胜, 马洪波, 2013.集合动力因子预报系统及其对一场切变暴雨落区的预报检验[J].吉林气象 (3): 12-16+29.
null
裴浩, 郝璐, 韩经纬, 2012.近40年内蒙古候降水变化趋势[J].应用气象学报23(5): 543-550.
null
秦大河, 罗勇, 陈振林, 等, 2007.气候变化科学的最新进展-IPCC第四次评估综合报告解析[J].气候变化研究进展6(3): 311-314.
null
冉令坤, 楚艳丽, 2009.强降水过程中垂直螺旋度和散度通量及其拓展形式的诊断分析[J].物理学报58(11): 8094-8106.
null
冉令坤, 李舒文, 周玉淑, 等, 2021.2021年河南“7·20”极端暴雨动、 热力和水汽特征观测分析[J].大气科学45(6): 1366-1383.
null
冉令坤, 齐彦斌, 郝寿昌, 2014.“7·21”暴雨过程动力因子分析和预报研究[J].大气科学38(1): 83-100.
null
斯琴, 韩经纬, 德勒格日玛, 等, 2013.内蒙古“6月25-28日”暴雨天气成因分析[J].干旱区资源与环境, 27(11): 172-177.
null
宋桂英, 李孝泽, 江靖, 等, 2016.2013年夏季内蒙古干旱-半干旱区两次极端降水事件对比[J].干旱区研究33(4): 747-757.
null
宋桂英, 李孝泽, 孙永刚, 等, 2013.内蒙古干旱-半干旱带2012年“7·20”极端暴雨事件的特征及成因[J].冰川冻土, 35(4): 883-891.
null
孙永刚, 2015.内蒙古灾害性天气研究论文集[M].北京: 气象出版社, 217-230.
null
王成鑫, 高守亭, 梁莉, 等, 2013.动力因子对地形影响下的四川暴雨落区的诊断分析[J].大气科学37(5): 1099-1110.
null
王绍武, 罗勇, 赵宗慈, 等, 2012.全球变暖的科学[J].气候变化研究进展8(3): 228-231.
null
王永清, 韩经纬, 梁凤娟, 等, 2014.2012年6月狼山脚下罕见大暴雨天气过程分析[J].内蒙古气象 (3): 3-6.
null
韦志刚, 李娴茹, 刘雨佳, 等, 2021.1961-2018年华南年和各季极端降水变化特征的比较分析[J].高原气象40(6): 1513-1530.DOI: 10.7522/j.issn.1000-0534.2021.zk001 .
null
许娈, 何金海, 高守亭, 等, 2013.集合动力因子对登陆台风“莫拉克”(0908)暴雨落区的诊断与预报研究[J].大气科学37(1): 23-35.
null
杨帅, 陈斌, 高守亭, 2013.水汽螺旋度和热力螺旋度在华北强“桑拿天”过程中的分析及应用[J].地球物理学报56(7): 2185-2194.
null
余淼, 刘晓旭, 李俊芝, 等, 2021.筑牢北方生态屏障建设幸福母亲河[C]//适应新时代水利改革发展要求推进幸福河湖建设论文集.武汉: 长江出版社, 356-361.DOI: 10.26914/c.cnkihy. 2021.020818 .
null
张桂莲, 仲夏, 韩经纬, 等, 2018.内蒙古中西部地区一次极端大暴雨特征分析[J].干旱气象36(1): 17-26.
null
张桂莲, 杭月荷, 付丽娟, 等, 2020.“列车效应”诱发的一次河套地区致灾暴雨成因[J].高原气象39(4): 788-795.DOI: 10. 7522/j.issn.1000-0534.2019.00122 .
null
赵宇, 崔晓鹏, 2009.对流涡度矢量和湿涡度矢量在暴雨诊断分析中的应用研究[J].气象学报67(4): 540-548.
null
赵宇, 高守亭, 2008.对流涡度矢量在暴雨诊断分析中的应用研究[J].大气科学32(3): 444-456.
null
朱刚, 2012.2009年5月一次山东暴雨的数值模拟研究[D].南京: 南京信息工程大学.
Outlines

/