Bias Characteristics of COSMIC RO Data within Clouds Based on Different Background Fields

  • Yan’an YIN ,
  • Shengpeng YANG
Expand
  • 1. Joint Center for Data Assimilation Research and Application,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China
    2. College of Atmospheric Science,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China

Received date: 2022-07-07

  Revised date: 2022-11-15

  Online published: 2023-09-26

Abstract

The Global Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation (RO) from 2007 to 2009 were collocated with the CloudSat nadir-pointing cloud profiling radar (CPR) in time and space in this study.We investigated the characteristics of fractional refractivity differences between COSMIC RO and the analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) within the different clouds. N b i a s E C M W F and N b i a s N C E Pindicate the fractional differences of refractivity between COSMIC RO and ECMWF, and COSMIC RO and NCEP analysis, respectively.The maximum values of N b i a s E C M W F within cumulus, stratocumulus, altocumulus and altostratus are 1.2%, 0.2%, 0.5%, and 0.2%.The highest values of N b i a s N C E Pare 1.8%, 0.5%, 0.5% and 0.4%, respectively.In the lower troposphere, the value of N b i a s E C M W F is positive and increases with the liquid water content, whereas the value of N b i a s N C E P is negative.From the perspective of global distribution, large positive refractivity differences for both ECMWF and NCEP analyses are shown in the equatorial convergence zone, which is highly correlated with the positive bias of water vapor and the negative bias of temperature in space.

Cite this article

Yan’an YIN , Shengpeng YANG . Bias Characteristics of COSMIC RO Data within Clouds Based on Different Background Fields[J]. Plateau Meteorology, 2023 , 42(5) : 1351 -1360 . DOI: 10.7522/j.issn.1000-0534.2022.00098

References

null
Anthes R A2011.Exploring Earth’s atmosphere with radio occultation[J].Atmospheric Measurement Techniques4(6): 1077-1103.DOI: 10.5194/amt-4-1077-2011 .
null
Anthes R A Bernhardt P A Chen Y, et al, 2008.The COSMIC/formosat-3 mission: early results[J].Bulletin of the American Meteorological Society89(3): 313-334.DOI: 10.1175/BAMS-89-3-313 .
null
Anthes R Rocken C Kuo Y H2000.Applications of COSMIC to meteorology and climate[J].Terrestrial, Atmospheric and Oceanic Sciences11(1): 115-156.DOI: 10.3319/TAO. 2000.11.1. 115(COSMIC ).
null
Hajj G Ao O Iijima B, et al, 2004.CHAMP and SAC-C atmospheric occultation results and intercomparisons[J].Journal of Geophysical Research: Atmospheres109(D6): D06109.DOI: 10. 1029/2003JD003909 .
null
Im E Wu C Durden S2005.Cloud profiling Radar for the CloudSat mission[J].Aerospace and Electronic Systems Magazine, IEEE, 20(10): 15-18.DOI: 10.1109/MAES.2005.1581095 .
null
Kahn B Eldering A Braverman A, et al, 2007.Toward the characterization of upper tropospheric clouds using atmospheric infrared sounder and microwave limb sounder observations[J].Journal of Geophysical Research112(D5): D05202.DOI: 10.1029/2006JD007336 .
null
Kuo C L Ade P Bock J, et al, 2004.High-Resolution observations of the cosmic microwave background power spectrum with ACBAR[J].The Astrophysical Journal600(1): 32-51.DOI: 10. 1086/379783 .
null
Kursinski R Hajj G2001.A comparison of water vapor derived from GPS occultations and global weather analyses[J].Journal of Geophysical Research: Atmospheres106(D1): 1113-1138.DOI: 10.1029/2000JD900421 .
null
Kursinski R Hajj G Bertiger W, et al, 1996.Initial results of radio occultation observations of earth’s atmosphere using the global positioning system[J].Science271(5252): 1107-1110.DOI: 10.1126/science.271.5252.1107 .
null
Kursinski R Hajj G Leroy S, et al, 2000.The GPS radio occultation technique[J].Terrestrial, Atmospheric and Oceanic Sciences11(1): 53-114.DOI: 10.3319/TAO.2000.11.1.53(COSMIC ).
null
Kursinski R Hajj G Schofield J, et al, 1997.Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System[J].Journal of Geophysical Research: Atmospheres102(D19): 23429-23465.DOI: 10.1029/97JD01569 .
null
Lin L Zou X L Anthes R, et al, 2010.COSMIC GPS radio occultation temperature profiles in clouds[J].Monthly Weather Review138(4): 1104-1118.DOI: 10.1175/2009MWR2986.1 .
null
Rocken C Anthes R Exner M, et al, 1997.Analysis and validation of GPS/MET data in the neutral atmosphere[J].Journal of Geophysical Research: Atmospheres102(D25): 29849-29866.DOI: 10.1029/97JD02400 .
null
Schreiner W S Weiss J P Anthes R, et al, 2020.COSMIC-2 radio occultation constellation‐first results[J].Geophysical Research Letters47(4): e2019GL086841.DOI: 10.1029/2019GL086841 .
null
Schreiner W Rocken C Sokolovskiy S, et al, 2010.Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single-and double-difference atmospheric excess phase processing[J].GPS Solutions14(1): 13-22.DOI: 10.1007/s10291-009-0132-5 .
null
Sokolovskiy S2003.Effect of superrefraction on inversions of radio occultation signals in the lower troposphere[J].Radio Science38(3): 1058.DOI: 10.1029/2002RS002728 .
null
Stephens G L Vane D G Boain R J, et al, 2002.The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation[J].Bulletin of the American Meteorological Society83(12): 1771-1790.DOI: 10.1175/BAMS-83-12-1771 .
null
Tanelli S Durden S L Im E, et al, 2008.CloudSat’s cloud profiling Radar after two years in orbit[J].IEEE Transactions on Geoscience and Remote Sensing46(11): 3560-3573.DOI: 10.1109/TGRS.2008.2002030 .
null
Ware R Rocken C Solheim F, et al, 1996.GPS sounding of the atmosphere from low Earth orbit[J].Bulletin of The American Meteorological Society77(1): 19-40.DOI: 10.1175/1520-0477(1996)077<0019: GSOTAF>2.0.CO; 2 .
null
Wickert J Reigber C Beyerle G, et al, 2001.Atmosphere sounding by GPS radio occultation[J].Geophysical Research Letters28(17): 3263-3266.DOI: 10.1029/2001GL013117 .
null
Wickert J Schmidt T Beyerle G, et al, 2004.The radio occultation experiment aboard CHAMP[J].Journal of the Meteorological Society of Japan82(1B): 381-395.DOI: 10.2151/jmsj.2004.381 .
null
Yang S P Zou X L2012.Assessments of cloud liquid water contributions to GPS radio occultation refractivity using measurements from COSMIC and CloudSat[J].Journal of Geophysical Research: Atmospheres117(D6): D06219.DOI: 10.1029/2011JD016452 .
null
Yang S P Zou X L Anthes R2021.Raytracing simulated GPS radio wave propagation paths experiencing large disturbances when going through the top of the sub-cloud layer[J].Remote Sensing13(22): 4693.DOI: 10.3390/rs13224693 .
null
Zou X L Yang S P Ray P2012.Impacts of ice clouds on GPS radio occultation measurements[J].Journal of Atmospheric Sciences, 69: 3670-3682.DOI: 10.1175/JAS-D-11-0199.1 .
null
孟恬, 杨胜朋, 程华, 2021.GPS掩星观测误差和边界层高度的判别[J].高原气象40(5): 1189-1201.DOI: 10.7522/j.issn.1000-0534.2020.00098 .
null
刘建军, 陈葆德, 2017.基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J].高原气象36(3): 632-642.DOI: 10. 7522/j.issn.1000-0534.2017.00028 .
null
杨冰韵, 吴晓京, 郭徵, 2017.基于CloudSat资料的中国地区深对流云物理特征研究[J].高原气象36(6): 1655-1664.DOI: 10.7522/j.issn.1000-0534.2017.00006 .
null
余小嘉, 杨胜朋, 蒋熹, 2019.COSMIC掩星资料在青藏高原地区的偏差特征[J].高原气象38(2): 288-298.DOI: 10.7522/j.issn.1000-0534.2018.00162 .
null
周文, 杨胜朋, 蒋熹, 等, 2018.利用COSMIC掩星资料研究青藏高原地区大气边界层高度[J].气象学报76(1): 117-133.DOI: 10.11676/qxxb2017.069 .
null
邹晓蕾, 2012.GPS无线电掩星资料特点[J].气象科技进展2(5): 49-54.DOI: 10.3969/j.issn.2095-1973.2012.05.007 .
Outlines

/