Comparative Analysis of Coupling Relationship Between Land Surface Processes and Atmospheric Boundary Layer Evolution in Nagqu Area in Different Seasons

  • Guantian WANG ,
  • Zeyong HU ,
  • Genhou SUN ,
  • Yaoxian YANG ,
  • Lianglei GU ,
  • Chunwei FU ,
  • Weiwei FAN ,
  • Di WU ,
  • Ruijia NIU ,
  • Hongyu LUO
Expand
  • 1. Northwest Institute of Ecological Environment and Resources,Chinese Academy of Sciences/Key Laboratory of Land Surface Processes and Climate Change in Cold and Dry Areas,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    2. Nagqu Plateau Climate and Environment Observation and Research Station of Tibet Autonomous Region,Nagqu 852000,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China
    4. Guangdong Provincial Laboratory of Southern Marine Science and Engineering (Zhuhai),Zhuhai 519080,Guangzhou,China

Received date: 2022-11-03

  Revised date: 2023-03-06

  Online published: 2023-11-14

Abstract

The coupling relationship between land surface processes and atmospheric boundary layer is one of the key links and difficulties in understanding the thermal effect over the Qinghai-Xizang Plateau.Based on the surface and radiosonde observation data of Nagqu Plateau Climate and Environment Observation and Research Station in May, July and October 2019, this paper analyzes the surface energy budget, the daily and seasonal variations of vertical profile of atmospheric temperature and humidity, in Nagqu Area of the Qinghai-Xizang Plateau, and discusses the evolution law of the atmospheric boundary layer height in different seasons in this region.The results show that the convective boundary layer is 2842 m high in sunny days due to the influence of diurnal net radiation intensity during the observation period in May.It is 1481 m high in cloudy day, which is relatively low, and the strong convective weather may change it into a stable boundary layer.In the meanwhile, the exchange between the sensible heat and the latent heat in the near surface atmosphere provides energy support for the maintenance and development of the atmospheric boundary layer.The vertical profile of potential temperature and specific humidity can correctly reflect the seasonal difference of atmospheric boundary layer height in gqu Area.The height of the convective boundary layer is highest in May, less high in October and the lowest in July while the stable boundary layer is highest in July, less high in May and lowest in October.

Cite this article

Guantian WANG , Zeyong HU , Genhou SUN , Yaoxian YANG , Lianglei GU , Chunwei FU , Weiwei FAN , Di WU , Ruijia NIU , Hongyu LUO . Comparative Analysis of Coupling Relationship Between Land Surface Processes and Atmospheric Boundary Layer Evolution in Nagqu Area in Different Seasons[J]. Plateau Meteorology, 2023 , 42(6) : 1361 -1371 . DOI: 10.7522/j.issn.1000-0534.2023.00020

References

null
Ao C O Chan T K Iijima B A, et al, 2008.Planetary boundary layer information from GPS radio occultation measurements[C]//GRAS SAF Workshop on Applications of GPSRO Measurements.Reading, United Kingdom: ECMWF and EUMETSAT, 5(1): 123-131.
null
Ding Y H Sumi A Shen X S1995.Structure of the mixed layer and estimates of sea surface fluxes during TOGA-COARE IOP.Part II: Estimates of sea surface fluxes[J].Journal of the Meteorological Society of Japan73(2B): 569-583.DOI: 10.2151/jmsj1965.73.2B_569 .
null
Garratt J R1994.The atmospheric boundary layer[J].Earth-Science Reviews, 1994, 37(1-2): 89-134.DOI: 10.1016/0012-8252(94)90026-4 .
null
Gryning S E Batchvarova E1999.Regional heat flux over the NOPEX area estimated from the evolution of the mixed-layer[J].Agricultural and Forest Meteorology, 98-99(31): 159-167.DOI: 10.1016/s0168-1923(99)00095-7 .
null
Hennemuth B Lammert A2006.Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter[J].Boundary-Layer Meteorology120(1): 181-200.DOI: 10. 1007/s10546-005-9035-3 .
null
Liu S Y Liang X Z2010.Observed diurnal cycle climatology of planetary boundary layer height[J].Climate, 23: 5790-5809.DOI: 10.1175/2010JCLI3552.1 .
null
Ma Y M Menenti M Feddes R, et al, 2008.Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths[J].Journal of Geophysical Research, 113: D08113.DOI: 10.1029/2007JD009124 .
null
Ma M J Pu Z X Wang S G, et al, 2011.Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in Northwest China[J].Boundary-Layer Meteorology, 140: 163-176.DOI: 10.1007/s10546-011-9608-2 .
null
Oke T R1988.Boundary layer climates[M].Halsted Press, New York.
null
Penman H L1948.Nautral evaporation from open water, bare soil and grass[A].Proceedings of Royol Society of London[C].A 193: 120-146.
null
Seibert P2000.Review and intercomparison of operational methods for the determination of the mixing height[J].Atmospheric Environment, 34: 1001-1027.DOI: 10.1016/S1352-2310(99)00349-0 .
null
Seidel D J Ao C O Li K2010.Estimating climatological planetary boundary layer heights from radiosonde observations: comparison of methods and uncertainty analysis[J].Journal of Geophysical Research: Atmospheres, 115: D16113.DOI: 10.1029/2009JD013680 .
null
Seidel D J Zhang Y Beljaars A, et al, 2012.Climatology of the planetary boundary layer over the continental United States and Europe[J].Journal of Geophysical Research: Atmospheres, 117: D17106.DOI: 10.1029/2012JD018143 .
null
Sorbjan Z1989.Structure of the Atmospheric Boundary Layer[M].Prentice Hall, Englewood Cliffs.
null
Stull R B1988.An Introduction to Boundary Layer Meteorology[M].Springer Science & Business Media.
null
Summa D Di Girolamo P Stelitano D, et al, 2013.Characterization of the planetary boundary layer height and structure by Raman lidar: Comparison of different approaches[J].Atmospheric Measurement Techniques6(3): 5195-5216, DOI: 10.5194/amtd-6-5195-2013 .
null
Zhao H J Che H Z Xia X G, et al, 2019.Climatology of mixing layer height in China based on multi-year meteorological data from 2000 to 2013[J].Atmospheric Environment, 213: 90-103, DOI: 10.1016/j.atmosenv.2019.05.047 .
null
卞林根, 陆龙骅, 逯昌贵, 等, 2001.1998年夏季青藏高原辐射平衡分量特征[J].大气科学2001(5): 577-588.DOI: 10.3878/j.issn.1006-9895.2001.05.01 .
null
戴加洗, 1990.青藏高原气候[M].北京: 气象出版社.
null
蒋维楣, 徐玉貌, 于洪彬, 1994.边界层气象学基础[ M].南京: 南京大气出版社.
null
李宏毅, 肖子牛, 朱玉祥, 2018.藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征[J].高原气象37(4): 923-935.DOI: 10.7522 /j.issn.1000-0534.2017.00097 .
null
李家伦, 洪钟祥, 孙菽芬, 2000.青藏高原西部改则地区大气边界层特征[J].大气科学24(3): 301-312.DOI: 10.1007/s10011-000-0335-3 .
null
李茂善, 戴有学, 马耀明, 等, 2006.珠峰地区大气边界层结构及近地层能量交换分析[J].高原气象25(5): 807-813.
null
李茂善, 马耀明, 胡泽勇, 等, 2004.藏北那曲地区大气边界层特征分析[J].高原气象23(5): 728-733.
null
李倩惠, 张宏升, 鞠婷婷, 等, 2020.华北北部半干旱地区夏季大气边界层特征的实验研究[J].北京大学学报(自然科学版)56(2): 215-222.DOI: 10.13209/j.0479-8023.2019.125 .
null
丑纪范, 1990.大气动力学的新进展[M].兰州: 兰州大学出版社.
null
潘云仙, 蒋维楣, 1982.我国大陆大气的平均最大混合浓度[J].中国环境科学2(5): 51-57.
null
申彦波, 赵宗慈, 石广玉, 2008.地面太阳辐射的变化、 影响因子及其可能的气候效应最新研究进展[J].地球科学进展, (9): 915-923.DOI: 1001-8166(2008)09-0915-09 .
null
苏彦入, 吕世华, 范广洲, 2018.青藏高原夏季大气边界层高度与地表能量输送变化特征分[J].高原气象37(6): 1470-1485.DOI: 10.7522 /j.issn.1000-0534.2018.00040 .
null
王敏仲, 魏文寿, 何清, 等, 2012.青藏高原北侧民丰站2011年7月对流层和低平流层大气观测研究[J].高原气象31(5): 1203-1214.
null
吴祖常, 董保群, 1998.我国陆域大气最大混合层厚度的地理分布与季节变化[J].科技通报14 (3): 158-163.DOI: 10.13774/j.cnki.kjtb.1998.03.003 .
null
赵建华, 张强, 王胜, 2011.西北干旱区对流边界层发展的热力机制模拟研究[J].气象学报69(6): 1029-1037.DOI: CNKI: SUN: QXXB.0.2011-06-011.DOI: 10.7522/j.issn.1000-0534.2012.00037 .
null
赵建华, 张强, 王胜, 等, 2013.西北干旱区夏季大气边界层逆温强度和高度的频率密度研究[J].高原气象32(2): 2377-2386.DOI: 10.7522/j.issn.1000-0534.2012.00037 .
null
赵鸣, 2006.大气边界层动力学[M].北京: 高等教育出版社.
null
周明煜, 2000.青藏高原大气边界层观测分析与动力学研究[M].北京: 气象出版社.
Outlines

/