A Comparative Study on the Impact of MWHS-2 and MHS Data Assimilation on the Simulation of Rainstorm in the Three Rivers Source Area

  • Xu CHEN ,
  • Lei WANG ,
  • Xiehui LI ,
  • Haobin ZHONG ,
  • Xuhui DENG
Expand
  • College of Atmospheric Sciences,Chengdu University of Information Technology / Sichuan Key Laboratory of Plateau Atmosphere and Environment,Chengdu 610225,Sichuan,China

Received date: 2022-10-17

  Revised date: 2023-03-20

  Online published: 2023-11-14

Abstract

Based on the mid-scale WRF (Weather Research and Forecasting) numerical model, this study uses the direct assimilation module data from the FY-3C satellite MWHS-2 (Micro-Wave Humidity Sounder 2), and the WRF-3DVAR (Three Dimensional Variation) method to conduct assimilation comparison experiments on two precipitation processes in the Three Rivers Source area.Moreover, this study extensively compares the effects of two assimilation data sets on simulation results: data from the MWHS-2 (microwave humidity instrument carried by FY-3C) and data from the MHS (Microwave Humidity Sounder) carried by NOAA-18 (National Oceanic and Atmospheric Administration-18).Results of the study show consistent simulation results for MWHS-2 and MHS data assimilation.For instance, regardless of whether assimilation is conducted or not, the simulated precipitation range is overestimated for precipitations less than 30 mm.However, the simulated range and amount are underestimated for precipitations higher than 30 mm.Furthermore, data assimilation strengthens the 500 hPa southwest wind field, increases the intensity of water vapour transport, shifts the high-altitude trough to the southwest, and strengthens the 300 hPa wind field disturbance, all of which increase the precipitation range above 30 mm and, to a certain extent, improve the precipitation level results.However, compared to the actual situation, the precipitation area is biased southward.Satellite data assimilation significantly improves the range of the water vapour flux field and specific humidity field precipitation areas, but its effects on the intensity improvement are not obvious.At the same time, changes in the water vapour flux field and specific humidity field change the precipitation forecast area and intensity.As for the temperature field, the WRF simulation includes significant errors.Satellite data assimilation shows a certain improvement effect on the temperature field and a more significant improvement effect on the humidity field.In other words, MWHS-2 or MHS satellite data assimilation improves the precipitation forecast in the Three Rivers Source area.These conclusions provide significant guidance for improving the precision of precipitation forecasting in the Three Rivers Source area.

Cite this article

Xu CHEN , Lei WANG , Xiehui LI , Haobin ZHONG , Xuhui DENG . A Comparative Study on the Impact of MWHS-2 and MHS Data Assimilation on the Simulation of Rainstorm in the Three Rivers Source Area[J]. Plateau Meteorology, 2023 , 42(6) : 1386 -1401 . DOI: 10.7522/j.issn.1000-0534.2023.00024

References

null
Bauer P Geer A J Lopez P, et al, 2010.Direct 4D‐Var assimilation of all‐sky radiances.Part I: implementation[J].Quarterly Journal of the Royal Meteorological Society136(652): 1868-1885.DOI: 10.1002/qj.659 .
null
Bormann N Bauer P2010.Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction.I: methods and application to ATOVS data[J].Quarterly Journal of the Royal Meteorological Society136(649): 1051-1063.DOI: 10.1002/qj.616 .
null
Chen F Dudhia J2001.Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 Modeling System.Part I: model implementation and sensitivity[J].Monthly Weather Review129(4): 569-585.
null
Dudhia, J, 1989.Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].Journal of the Atmospheric Sciences46(20): 3077-3107.
null
Duncan D I Bormann N2020.On the addition of microwave sounders and NWP skill, including assessment of FY-3D sounders [M].European Centre for Medium-Range Weather Forecasts.
null
Geer A J Lonitz K Weston P, et al, 2018.All‐sky satellite data assimilation at operational weather forecasting centres[J].Quarterly Journal of the Royal Meteorological Society144(713): 1191-1217.DOI: 10.1002/qj.3202 .
null
Geer A Baordo F2014.Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies[J].Atmospheric Measurement Techniques7(6): 1839-1860.DOI: 10.5194/amt-7-1839-2014 .
null
Hong S Y Dudhia J Chen S H2004.A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J].Monthly Weather Review132(1): 103-120.
null
Kain J S Kain J2004.The Kain‐Fritsch convective parameterization: An update[J].Journal of Applied Meteorology43(1): 170-181.
null
Lawrence H Bormann N Geer A J, et al, 2018.Evaluation and assimilation of the microwave sounder MWHS‐2 Onboard FY‐3C in the ECMWF numerical weather prediction system[J].IEEE Transactions on Geoscience & Remote Sensing, 1-34.DOI: 10.1109/TGRS.2018.2798292 .
null
Leontiev A Rostkier‐Edelstein D Reuveni Y2020.On the potential of improving WRF model forecasts by assimilation of high‐resolution GPS‐derived water‐vapor maps augmented with METEOSAT-11 data[J].Remote Sensing13(1): 96.DOI: 10.3390/rs13010096 .
null
Lien G Y Miyoshi T Kalnay E2016.Assimilation of TRMM multisatellite precipitation analysis with a low-resolution NCEP global forecast system[J].Monthly Weather Review144(2): 643-661.DOI: 10.1175/MWR-D-15-0149.1 .
null
Liu Q Xue Y Li C2013.Sensor-based clear and cloud radiance calculations in the community radiative transfer model[J].Applied Optics52(20): 4981-4990.DOI: 10.1364/ao.52.004981 .
null
Liu R Lu Q Chen M, et al, 2021.Impact of assimilating FY-3C MWHS2 data in the RMAPS-ST forecast system on its rainfall forecasts[J].Atmospheric and Oceanic Science Letters14(4): 100059.DOI: 10.1016/j.aosl.2021.100059 .
null
Ma Y Tang G Long D, et al, 2016.Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau[J].Remote Sensing8(7): 569.DOI: 10. 3390/rs8070569 .
null
Mlawer E J Taubman S J Brown P D, et al, 1997.Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave[J].Journal of Geophysical Research: Atmospheres102(D14): 16663-16682.
null
Shrestha D Robertson D Wang Q, et al, 2013.Evaluation of numerical weather prediction model precipitation forecasts for short-term streamflow forecasting purpose[J].Hydrology and Earth System Sciences17(5): 1913-1931.
null
Singh K Bhaskaran P K2018.Impact of lateral boundary and initial conditions in the prediction of Bay of Bengal cyclones using WRF model and its 3D-VAR data assimilation system[J].Journal of Atmospheric and Solar-Terrestrial Physics, 175: 64-75.DOI: 10.1016/j.jastp.2018.05.007 .
null
Wang J Xu Y Yang L, et al, 2020.Data assimilation of high-resolution satellite rainfall product improves rainfall simulation associated with landfalling tropical cyclones in the Yangtze river Delta[J].Remote Sensing12(2): 276.DOI: 10.3390/rs12020276 .
null
Wei J Dong N Fersch B, et al, 2021.Role of reservoir regulation and groundwater feedback in a simulated ground‐soil‐vegetation continuum: a long‐term regional scale analysis[J].Hydrological Processes35(8): e14341.DOI: 10.1002/hyp.14341 .
null
Wu Y Liu Z Li D2020.Improving forecasts of a record-breaking rainstorm in Guangzhou by assimilating every 10-min AHI radiances with WRF 4DVAR[J].Atmospheric Research, 239: 104912.DOI: 10.1016/j.atmosres.2020.104912 .
null
Xie Y Xing J Shi J, et al, 2016.Impacts of radiance data assimilation on the Beijing 7·21 heavy rainfall[J].Atmospheric Research, 169: 318-330.DOI: 10.1016/j.atmosres.2015.10.016 .
null
Xu R Tian F Yang L, et al, 2017.Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network[J].Journal of Geophysical Research: Atmospheres122(2): 910-924.
null
Yang J Duan K Wu J, et al, 2015.Effect of data assimilation using WRF-3DVAR for heavy rain prediction on the northeastern edge of the Tibetan Plateau[J].Advances in Meteorology, 2015.DOI: 10.1155/2015/294589 .
null
Yi L Zhang W Wang K2018.Evaluation of heavy precipitation simulated by the WRF model using 4D-Var data assimilation with TRMM 3B42 and GPM IMERG over the Huaihe River Basin, China[J].Remote Sensing10(4): 646.DOI: 10.3390/rs10040646 .
null
Yucel I Onen A2014.Evaluating a mesoscale atmosphere model and a satellite-based algorithm in estimating extreme rainfall events in northwestern Turkey[J].Natural Hazards and Earth System Sciences14(3): 611-624.
null
Zhang S Wang D Qin Z, et al, 2018.Assessment of the GPM and TRMM precipitation products using the rain gauge network over the Tibetan Plateau[J].Journal of Meteorological Research, 32: 324-336.DOI: 10.1007/s13351-018-7067-0 .
null
Zhu L Qin Z Min J, et al, 2021.Characterizing, mitigating, and comparing the along-scanline noise in Fengyun-3 Series Microwave Humidity Sounders (MWHSs)[J].IEEE Transactions on Geoscience and Remote Sensing, 60: 1-10.DOI: 10.1109/TGRS.2020.3043310 .
null
Zupanski D Zhang S Q Zupanski M, et al, 2011.A prototype WRF-based ensemble data assimilation system for dynamically downscaling satellite precipitation observations[J].Journal of Hydrometeorology12(1): 118-134.
null
蔡永祥, 罗少辉, 王军, 等, 2022.三江源地区1961-2019年降水量时空变化特征[J].草业科学39(1): 10-20.
null
陈耀登, 郭闪, 王元兵, 等, 2020.基于优化样本组合的集合-变分混合同化方案研究[J].热带气象学报36(4): 13.
null
李红梅, 申红艳, 汪青春, 等, 2021.1961-2017年青海高原雨季和降水的变化特征[J].高原气象40(5): 1038-1047.DOI: 10. 7522/j.issn.1000-0534.2020.00113 .
null
刘硕松, 董佩明, 韩威, 等, 2012.RTTOV和CRTM对“罗莎”台风卫星微波观测的模拟研究与比较[J].气象学报70(3): 13.DOI: 10.11676/qxxb2012.048 .
null
毛璐, 谢彦辉, 刘瑞霞, 等, 2022.FY-3C微波湿度计辐射率资料同化对RMAPS-ST系统的降水预报影响[J].高原气象41(4): 896-908.DOI: 10.7522/j.issn.1000-0534.2021.00025 .
null
强安丰, 魏加华, 解宏伟, 2019.三江源区大气水汽含量时空特征及其转化变化[J].水利水电快报40(5): 5.
null
沈程锋, 李国平, 2022.基于GPM资料的四川盆地及周边地区夏季地形降水垂直结构研究[J].高原气象41(6): 1532-1543.DOI: 10.7522/j.issn.1000-0534.2021.0116 .
null
孙璐, 陈思远, 潘贤, 等, 2022.华南暖区暴雨预报的模式初始场质量敏感性分析[J].气象科学42(3): 356-367.
null
吴应昂, 2015.FY-3C卫星微波辐射资料同化应用研究[D].北京: 国防科学技术大学.
null
杨军, 董超华, 卢乃锰, 等, 2009.中国新一代极轨气象卫星——风云三号[J].气象学报67(4): 501-509.DOI: 10.11676/qxxb2009.050 .
null
于晓晶, 韩威, 马秀梅, 等, 2018.卫星微波辐射资料同化在新疆降水预报中的应用初探[J].暴雨灾害37(4): 10.DOI: 10. 3969/j.issn.1004-9045.2018.04.006 .
null
周校立, 官莉, 2023.RTTOV中模拟亮温对垂直插值方案的敏感性研究[J].科学技术创新(4): 212-216.
null
庄照荣, 李兴良, 陈静, 等, 2020.GRAPES Hybrid-3DVar对台风苏迪罗的数值试验[J].大气科学44(5): 1076-1092.
Outlines

/