The Impact of Assimilating Himawari-8 Radiance Data on the Prediction of a Severe Storm over Sichuan-Chongqing Region

  • Hao LIANG ,
  • Dongmei XU ,
  • Aiqing SHU ,
  • Xuewei ZHANG ,
  • Lixin SONG
Expand
  • 1. Key Laboratory of Meteorological Disaster,Ministry of Education /Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China
    2. State Key Laboratory of Remote Sensing Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China
    3. Chengde Meteorological Bureau,Chengde 067000,Heibei,China
    4. China Meteorological Administration Radar Meteorology Key Laboratory,Nanjing 210000,Jiangsu,China

Received date: 2022-07-20

  Revised date: 2022-12-27

  Online published: 2023-11-14

Abstract

Himawari-8 is a new generation of stationary orbit imager, AHI (Advanced Himawari Imager) onboard is able to is able to provide observations with high spatial and temporal resolution to detect weather systems continuously over Sichuan - Chongqing Region.In this study, a numerical simulation is conducted for a severe regional storm event over Sichuan-Chongqing region on April 19, 2019 based on the weather Research and Forecasting (WRF) model.Furtherly, several radiance data assimilation experiments were performed for the storm with the WRF data assimilation (WRFDA) system from Himawari-8 AHI water vapor channels.Infrared radiance quality control and cloud detection procedures are conducted firstly.Cycling data assimilation schemes are further designed to investigate the impact of assimilating AHI radiance on the analyses and prediction of the weather system.The results show that the simulated brightness temperature of AHI water channels based on the radiative transfer model of CRTM in the analysis is more consistent with the observed brightness temperature than the those simulated from the background.It is also found that that assimilation of Himawari-8 AHI water vapor channels contributes to better describing the model initial conditions including the wind field, the water vapor field, and the radar reflectivity on multiple levels.Compared to the control experiment without any data assimilation, the forecast skill is enhanced in terms of predicting the main patterns of the precipitation after assimilating the AHI water vapor radiance data.To be specific, the assimilation experiment could capture the position of the main rainband and the center of heavy precipitation better.Through the AHI water vapor data assimilation, the heavy precipitation centers that are missed in the control experiment are successfully predicted.In addition, AHI radiance data assimilation experiment effectively improves the overestimated heavy precipitation from the control experiment in eastern Sichuan and southeastern Gansu for both the range and intensity.This study aims to provide the useful reference for the pretreatment and assimilation of geostationary infrared radiance data in the rainstorm system in numerical models over Sichuan-Chongqing Region.

Cite this article

Hao LIANG , Dongmei XU , Aiqing SHU , Xuewei ZHANG , Lixin SONG . The Impact of Assimilating Himawari-8 Radiance Data on the Prediction of a Severe Storm over Sichuan-Chongqing Region[J]. Plateau Meteorology, 2023 , 42(6) : 1478 -1491 . DOI: 10.7522/j.issn.1000-0534.2022.00112

References

null
Bauer P Ohring G Kummerow C, et al, 2011.Assimilating satellite observations of clouds and precipitation into NWP models[J].Bulletin of the American Meteorological Society, 92(6): ES25-ES28.DOI: 10.1175/2011BAMS3182.1 .
null
Goldberg M D Qu Y Mcmillin L M, et al, 2003.AIRS near-real-time products and algorithms in support of operational numerical weather prediction[J].IEEE Transactions on Geoscience and Remote Sensing41(2): 379-389.DOI: 10.1109/TGRS.2002. 808307 .
null
Honda T Miyoshi T Lien G Y, et al, 2018.Assimilating all-sky Himawari-8 satellite infrared radiances: a case of typhoon soudelor (2015)[J].Monthly Weather Review146(1): 213-229.DOI: 10.1175/MWR-D-16-0357.1 .
null
Ma Z Z Eric S M Zhang B L, et al, 2017.Impact assessment of Himawari-8 AHI data assimilation in NCEP GDAS/GFS with GSI[J].Journal of Atmospheric and Oceanic Technology34(4): 797-815.DOI: 10.1175/JTECH-D-16-0136.1 .
null
Masahiro K2018.Assimilation of Himawari-8 Clear Sky Radiance Data in JMA's global and mesoscale NWP systems[J].Journal of the Meteorological Society of Japan, 96B: 173-192.DOI: 10.2151/jmsj.2018-037 .
null
Minamide M Zhang F Q2018.Assimilation of All-Sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer initialization on convection-permitting tropical cyclone prediction[J].Monthly Weather Review146(10): 3241-3258.DOI: 10. 1175/MWR-D-17-0367.1 .
null
Otkin J A2012. Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event[J].Journal of Geophysical Research: Atmospheres140(D19): D19203.DOI: 10.1029/2012JD017568 .
null
Wang Y B Liu Z Q Yang S, et al, 2018.Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for “7·19” severe storm over north China[J].Journal of Geophysical Research Atmospheres123(624): 3374-3394.DOI: 10.1002/2017JD027697 .
null
Wu Y L Liu Z Q Li D Q2020.Improving forecasts of a record-breaking rainstorm in Guangzhou by assimilating every 10-min AHI radiances with WRF 4DVAR[J].Atmospheric Research239(623): 104912.DOI: 10.1016/j.atmosres.2020.104912 .
null
Xu D M Liu Z Q Fan S Y, et al, 2021.Assimilating All-sky infrared radiances from Himawari-8 using the 3DVar method for the prediction of a severe storm over North China[J].Advances in Atmospheric Sciences38(4): 661-676.DOI: 10.1007/s00376-020-0219-z .
null
Zhuge X Zou X2016.Test of a modified infrared-only ABI cloud mask algorithm for AHI radiance observations[J].Journal of Applied Meteorology and Climatology55(11): 2529-2546.DOI: 10.1175/JAMC-D-16-0254.1 .
null
耿晓雯, 闵锦忠, 杨春, 等, 2020.FY-4A AGRI辐射率资料偏差特征分析及订正试验[J].大气科学44(4): 679-694.DOI: 10. 3878/j.issn.1006-9895.1907.18254 .
null
官莉, 王振会, 2007.用空间匹配的MODIS云产品客观确定AIRS云检测[J].气象科学27(5): 516-521.DOI: 10.3969/j.issn. 1009-0827.2007.05.007 .
null
官莉, 2005.卫星红外超光谱资料及其在云检测、 晴空订正和大气廓线反演方面的应用[D].南京: 南京信息工程大学.
null
黄嘉丽, 秦年秀, 2020.近50年来我国西南地区暴雨变化特征分析[J].低碳世界10(12): 229-230.DOI: 10.16844/j.cnki.cn10-1007/tk.2020.12.111 .
null
蒋璐西, 陈科艺, 陈林琳, 2019.MWHS/FY-3资料同化在四川盆地暴雨预报中的应用研究[J].高原山地气象研究39(4): 9-15.DOI: 10.3969/j.issn.1674-2184 ·2019.04.002.
null
毛璐, 谢彦辉, 刘瑞霞, 等, 2022.FY-3C微波湿度计辐射率资料同化对RMAPS-ST系统的降水预报影响[J].高原气象41(4): 896-908.DOI: 10.7522/j.issn.1000-0534.2021.00025 .
null
束艾青, 许冬梅, 李泓, 等, 2022.FY-3D卫星MWHS-2辐射率资料直接同化对台风“米娜”预报的影响[J].热带海洋学报41(5): 17-28.DOI: 10.11978/2021160 .
null
覃丹宇, 方宗义, 2014.利用静止气象卫星监测初生对流的研究进展[J].气象40(1): 7-17.DOI: 10.7519/j.issn.1000-0526. 2014.01.002 .
null
王元兵, 陈耀登, 2018.葵花8号辐射率资料在对流尺度数值预报中的同化研究[C]//.第35届中国气象学会年会S9卫星资料同化. 64.
null
许冬梅, 沈菲菲, 李泓, 等, 2022.新一代静止气象卫星葵花8号的晴空红外辐射率资料同化对台风“天鸽”的预报影响研究[J].海洋学报44(3): 40-52.DOI: 10.12284/hyxb2022087 .
null
杨春, 闵锦忠, 刘志权, 2017.AMSR2辐射率资料同化对台风“山神”分析和预报的影响研究[J].大气科学41(2): 372-384.DOI: 10.3878/j.issn.1006-9895.1608.16127 .
null
张冰, 郑媛媛, 沈菲菲, 等, 2021.2017年苏南一次特大暴雨高分辨率模拟及特征分析[J].气象科学41(3): 386-397.DOI: 10. 12306 /2020jms.0051 .
null
张家国, 王珏, 周金莲, 等, 2008.暴雨多普勒天气雷达回波特征分析及临近预警[J].暴雨灾害27(4): 326-329.DOI: 10.3969/j.issn.1004-9045.2008.04.007 .
null
张涛, 姜立鹏, 师春香, 等, 2019.AMSU-A全空辐射率资料同化对台风“天鸽”的预报影响研究[J].大气科学学报42(5): 705-714.DOI: 10.13878/j.cnki.dqkxxb.20180731001 .
null
周玉淑, 颜玲, 吴天贻, 等, 2019.高原涡和西南涡影响的两次四川暴雨过程的对比分析[J].大气科学43(4): 813-830.DOI: 10.3878/j.issn.1006-9895.1807.18147 .
null
朱文刚, 2012.高光谱大气红外探测器AIRS资料云检测及晴空通道应用技术初步研究[D].南京: 南京信息工程大学.
Outlines

/