Comparative Analysis of Individual Water Vapor Sources in Dry and Wet Year in Southwest China

  • Jianing ZHU ,
  • Xianyu YANG ,
  • Yaqiong Lü ,
  • Jun WEN ,
  • Ying CHEN
Expand
  • 1. College of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,Sichuan,China

Received date: 2022-07-31

  Revised date: 2023-01-05

  Online published: 2023-11-14

Abstract

The climate of Southwest China is wet all year round, but the frequent drought disasters in recent years have caused huge economic losses such as crop yield reduction and forest fire.In order to fully understand the anomalies of water vapor transport in drought years in Southwest China and provide reference for early warning of drought disasters in this area in the future, this study used TRMM and APHRODITE precipitation data to analyze the interannual variation of precipitation and the interannual variation of precipitation in various seasons in Southwest China from 1998 to 2019, selected the summer dry year (2011), autumn dry year (2009) and 2008, which were relatively wet in summer and autumn.Using Lagrangian transport model FLEXPART, we tracked the paths of water vapor transport and water vapor sources in the two extreme dry seasons (the autumn of 2009 and the summer of 2011), and compared with the summer and autumn of the wet year (2008), respectively.The results showed that: (1) The paths of water vapor transport in dry and wet year are consistent, and the paths in southwest China in summer can be divided into three main paths: the southwest path, the southeast path and the northwest path, among which the most dominant is the southwest path, so the main water vapor source area are the Arabian Sea——the Bay of Bengal.In autumn, the main paths can be divided into two: the southeast path and the northwest path, of which the most important is the southeast path, so the main source of water vapor is South China Sea——the Pacific Northwest.(2) There are differences in the strength of water vapor transport between dry and wet years.The reason for the drought in Southwest China in summer is that the water vapor transported by the southwest route is weak, while the reason for the drought in Southwest China in autumn is that the water vapor transported by southeast route is weak.

Cite this article

Jianing ZHU , Xianyu YANG , Yaqiong Lü , Jun WEN , Ying CHEN . Comparative Analysis of Individual Water Vapor Sources in Dry and Wet Year in Southwest China[J]. Plateau Meteorology, 2023 , 42(6) : 1504 -1517 . DOI: 10.7522/j.issn.1000-0534.2023.00001

References

null
Chen B Zhang W Yang S, et al, 2019.Identifying and contrasting the sources of the water vapor reaching the subregions of the Tibetan Plateau during the wet season[J].Climate Dynamics, 53: 6891-6907.DOI: 10.1007/s00382-019-04963-2 .
null
Huang Y J Cui X P2015a.Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method[J].Atmospheric Science Letters16(2): 177-183.DOI: 10. 1002/asl2.562 .
null
Huang Y J Cui X P2015b.Moisture sources of torrential rainfall events in the Sichuan Basin of China during summers of 2009-13[J].Journal of Hydrometeorology16(4): 1906-1917.DOI: 10.1175/jhm-d-14-0220.1 .
null
James P Stohl A Spichtinger N, et al, 2004.Climatological aspects of the extreme European rainfall of August 2002 and a trajectory method for estimating the associated evaporative source regions[J].Natural Hazards and Earth System Science4(5/6): 733-746.DOI: 1684-9981/nhess/2004-4-733 .
null
Liu R Wen J Wang X, et al, 2021.Case studies of atmospheric moisture sources in the source region of the Yellow River from a Lagrangian perspective[J].International Journal of Climatology42(3), 1516-1530.DOI: 10.1002/joc.7317 .
null
Stohl A Hittenberger M Wotawa G1998.Validation of the lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data[J].Atmospheric Environment32(24): 4245-4264.DOI: 10.1016/S1352-2310(98)00184-8 .
null
Stohl A James P2004.A Lagrangian analysis of the atmospheric branch of the global water cycle.Part I: method description, validation, and demonstration for the August 2002 flooding in Central Europe[J].Journal of Hydrometeorology5(4): 656-678.DOI: 10.1175/1525-7541(2004)005<0656: ALAOTA>2.0.CO; 2 .
null
Stohl A James P2005a.A Lagrangian analysis of the atmospheric branch of the global water cycle.Part II: moisture transports between Earth’s Ocean basins and river catchments[J].Journal of Hydrometeorology6(6): 961-984.DOI: 10.1175/JHM470.1 .
null
Stohl A Forster C Frank A, et al, 2005b.Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2[J].Atmospheric Chemistry and Physics5(9): 2461-2474.DOI: 10.5194/acp-5- 2461 -2005 .
null
Stohl A Forster C Sodemann H2008.Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N-a tale of hurricanes and an atmospheric river[J].Journal of Geophysical Research: Atmospheres, 113(D5): n/a-n/a.DOI: 10. 1029/2007JD009006 .
null
Wilhite D A2000.Drought as a natural hazard: concepts and definitions[A].Drought: A Global Assessent[M].Wilhite D A, Ed.Routledge, 3-18.
null
Yang J Gong D Y Wang W S, et al, 2012.Extreme drought event of 2009/2010 over southwestern China[J].Meteorology Atmospheric Physics115(3/4): 173-184.DOI: 10.1007/s00703-011-0172-6 .
null
Zhang C Tang Q H Chen D L, et al, 2017.Tracing changes in atmospheric moisture supply to the drying Southwest China[J].Atmospheric Chemistry and Physics, 17: 10383-10393.DOI: 10. 5194/acp-17- 10383-2017 .
null
Zhang C2020.Moisture sources for precipitation in Southwest China in summer and the changes during the extreme droughts of 2006 and 2011[J].Journal of Hydrology591(12): 125333.DOI: 10.1016/j.jhydrol.2020.125333 .
null
陈斌, 徐祥德, 卞建春, 等, 2010.夏季亚洲季风区对流层向平流层输送的源区、 路径及其时间尺度的模拟研究[J].大气科学34(3): 495-505.DOI: 1006-9895(2010)03-0495-11 .
null
陈斌, 徐祥德, 施晓晖, 2011.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区[J].气象学报69(5): 810-818.DOI: 10.11676/qxxb2011.071 .
null
陈斌, 徐祥德, 杨帅, 等, 2012.夏季青藏高原地区近地层水汽进入平流层的特征分析[J].地球物理学报55(2): 406-414.DOI: 10.6038/j.issn.0001-5733.2012.02.005 .
null
陈子凡, 王磊, 李谢辉, 等, 2022.西南地区极端降水时空变化特征及其与强ENSO事件的关系[J].高原气象41(3): 604-616.DOI: 10.7522/j.issn.1000-0534.2022.00004 .
null
黄荣辉, 刘永, 王林, 等, 2012.2009年秋至2010年春我国西南地区严重干旱的成因分析[J].大气科学36(3): 443-457.DOI: 10.3878/j.issn.1006-9895.2011.11111 .
null
李毅, 王举, 黄泓, 2012.西南地区近三年冬季水汽输送异常的研究[C]//江苏镇江: 第九届长三角气象科技论坛论文集.2012: 8-8.
null
李忆平, 王劲松, 李耀辉, 2015.2009/2010年中国西南区域性大旱的特征分析[J].干旱气象33(4): 537-545.DOI: 10.11755/j.issn.1006-7639(2015)-04-0537 .
null
李永华, 徐海明, 刘德, 2009.2006年夏季西南地区东部特大干旱及其大气环流异常[J].气象学报67(1): 122-132.DOI: 10. 3321/j.issn: 0577-6619.2009.01.013 .
null
李永华, 徐海明, 高阳华, 等, 2010.西南地区东部夏季旱涝的水汽输送特征[J].气象学报68(6): 932-943.DOI: 10.11676/qxxb2010.088 .
null
刘德, 李永华, 高阳华, 等, 2005.重庆夏季旱涝的欧亚环流特征分析[J].高原气象24(2): 275-279.
null
刘煜, 刘蓉, 王欣, 等, 2022a.黄河源区干湿演变条件下的水汽输送特征研究[J].高原气象41(1): 47-57.DOI: 10.7522/j.issn.1000-0534.2020.00057 .
null
刘煜, 刘蓉, 王欣, 等, 2022b.基于拉格朗日方法评估青藏高原若尔盖地区水汽输送特征[J].高原气象41(1): 58-67.DOI: 10.7522/j.issn.1000-0534.2021.00100 .
null
马建华, 2010.西南地区近年特大干旱灾害的启示与对策[J].人民长江41(24): 7-12.DOI: 10.16232/j.cnki.1001-4179. 2010.24.026 .
null
彭京备, 张庆云, 布和朝鲁, 2007.2006年川渝地区高温干旱特征及其成因分析[J].气候与环境研究12(3): 464-474.DOI: 10.3969/j.issn.1006-9585.2007.03.026 .
null
权晨, 陈斌, 赵天良, 等, 2016.拉格朗日水汽源诊断方法在三江源区的应用[J].应用气象学报27(6): 688-697.DOI: 10. 11898/1001-7313.20160605 .
null
钱正安, 宋敏红, 吴统文, 等, 2017.世界干旱气候研究动态及进展综述(Ⅰ): 若干主要干旱区国家的研究动态及联合国的贡献[J].高原气象36(6): 1433-1456.DOI: 10.7522/j.issn.1000-0534.2017.00075 .
null
王嘉媛, 胡学平, 许平平, 等, 2015.西南地区2次秋冬春季持续严重干旱气候成因对比[J].干旱气象33(2): 202-212.DOI: 10.11755/j.issn.1006-7639(2015)-02-0202 .
null
王劲松, 李耀辉, 王润元, 等, 2012.我国气象干旱研究进展评述[J].干旱气象30(4): 497-508.DOI: 1006-7639(2012)-04-0497-12 .
null
王卫国, 李弘毅, 朱小凡, 等, 2022.1979-2018年青藏高原不同地区积雪季极端降水水汽来源分析[J].高原气象41 (6): 1367-1383.DOI: 10.7522/j.issn.1000-0534.2021.00080 .
null
王映思, 肖天贵, 董雪峰, 2021.1961-2019年中国西南地区夏季长周期旱涝急转与大气环流特征[J].高原气象40(4): 760-772.DOI: 10.7522/j.issn.1000-0534.2020.00067 .
null
杨显玉, 吕雅琼, 文军, 等, 2022.三江源区域夏季降水异常的水汽输送及源地特征的研究[J].高原气象41(2): 465-476.DOI: 10.7522/j.issn.1000-0534.2022.00015 .
null
尹晗, 李耀辉, 2013.我国西南干旱研究最新进展综述[J].干旱气象31(1): 182-193.DOI: 10.11755/j.issn.1006-7639(2013)-01-0182 .
null
周李磊, 杨华, 刘睿, 等, 2017.基于TRMM数据的西南地区年降水时空特征研究[J].重庆师范大学学报(自然科学版)34(1): 114-122+142.DOI: 10.11721/cqnuj20170102 .
null
曾钰婷, 张宇, 王煕曌, 等, 2022.2014年夏季一次那曲强降水的诊断分析和水汽来源的模拟研究[J].高原气象41(2): 477-488.DOI: 10.7522/j.issn.1000-0534.2021.00077 .
null
朱丽, 刘蓉, 王欣, 等, 2019.基于FLEXPART模式对黄河源区盛夏降水异常的水汽源地及输送特征研究[J].高原气象38(3): 484-496.DOI: 10.7522/j.issn.1000-0534.2019.00015 .
Outlines

/