The Applicability Performance of the ERA5-Land Precipitation Datasets in Southwest China

  • Xiaolong HUANG ,
  • Wei WU ,
  • Jianhui XU ,
  • Shiying LI ,
  • Yuhe JIANG ,
  • Bin DU ,
  • Liwei WANG
Expand
  • 1. Sichuan Meteorological Observation and Data Centre,Chengdu 610072,Sichuan,China
    2. Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province,Chengdu 610072,Sichuan,China
    3. Guangzhou Institute of Geography,Guangdong Academy of Sciences,Guangzhou 510070,Guangdong,China
    4. Jinlin Meteorological Information Centre,Changchun 130062,Jilin,China

Received date: 2022-07-27

  Revised date: 2023-01-16

  Online published: 2023-11-14

Abstract

ERA5L precipitation reanalysis datasets were provided by the European Centre for Medium-Range Weather Forecasts(ECMWF) Fifth Generation Land Surface Reanalysis (ERA5L). An investigation of the applicability of ERA5L precipitation reanalysis datasets produced for Sichuan, Chongqing, Guizhou, Yunnan and Xizang in Southwest China has been conducted.Statistical metrics, including Pearson correlation coefficients (CCs), mean relative deviations (MREs), root mean square errors (RMSEs), probability of detections (PODs), false alarm rates (FARs), and critical success indices (CSIs), were employed to assess the features and accuracy of ERA5L precipitation data using 441 national ground stations of the China Meteorological Administration between 2018 and 2020.The characteristics and deviations of ERA5L precipitation data were analysed in aspects of different regions, stations, altitudes, and timescales (monthly and seasonal) in our assessment phase.The following insights were revealed: (1) ERA5L better represents precipitation changes in the southwestern region; however, it tends to show higher precipitation levels than the in-situ observations, especially in Xizang.(2) In the Sichuan Basin, high correlation has been found between ERA5L precipitation data and in-situ observations, with a small error.The areas of Xizang, Yunnan, Guizhou and Western Sichuan are characterized by complex terrains and mountainous regions.The ERA5L data here has a relatively higher error.(3) The ERA5L exhibits a clear monthly variation in error, with a decline in overall precipitation leading to higher MRE, lower POD, and increased FAR from July to February.The MRE decreases, the POD increases, and the FAR rate decreases as precipitation increases from February to July.The quality of ERA5L varies between provinces and seasons.There is excellent precipitation quality in Chongqing during spring and autumn, and in Guizhou and Sichuan during summer and winter.(4) ERA5L precipitation is overestimated compared to in-situ observations in light rain magnitude, but underestimated in moderate and above-moderate rain.The underestimate becomes more severe as the rain intensity increases.As a whole, ERA5L has the potential for various applications in Southwest China.The hierarchy of ERA5L precipitation quality from high to low occurs in the following order: low altitude, medium altitude, and high altitude.In the context of five provinces, the order of applicability from high to low is as follows: Chongqing, Guizhou, Sichuan, Yunnan, and Xizang.

Cite this article

Xiaolong HUANG , Wei WU , Jianhui XU , Shiying LI , Yuhe JIANG , Bin DU , Liwei WANG . The Applicability Performance of the ERA5-Land Precipitation Datasets in Southwest China[J]. Plateau Meteorology, 2023 , 42(6) : 1562 -1575 . DOI: 10.7522/j.issn.1000-0534.2023.00012

References

null
Amjad M Yilmaz M T Yucel I, et al, 2020.Performance evaluation of satellite-and model-based precipitation products over varying climate and complex topography[J].Journal of Hydrology, 584: 124707.DOI: 10.1016/j.jhydrol.2020.124707 .
null
Blacutt L A Herdies D L de Gon?alves L G G, et al, 2015.Precipitation comparison for the CFSR, MERRA, TRMM3B42 and combined scheme datasets in Bolivia[J].Atmospheric Research, 163: 117-131.DOI: 10.1016/j.atmosres.2015.02.002 .
null
Bell B Hersbach H Simmons A, et al, 2021.The ERA5 global reanalysis: preliminary extension to 1950[J].Quarterly Journal of the Royal Meteorological Society147(741): 4186-4227.DOI: 10.1002/qj.4174 .
null
Bengtsson L Shukla J1988.Integration of space and in situ observations to study global climate change[J].Bulletin of the American Meteorological Society69(10): 1130-1143.DOI: 10.1175/1520-0477(1988)069<1130: IOSAIS>2.0.CO; 2 .
null
Hersbach H Bell B Berrisford P, et al, 2020.The ERA5 global reanalysis[J].Quarterly Journal of the Royal Meteorological Society146(730): 1999-2049.DOI: 10.1002/qj.3803 .
null
Hoffmann L Günther G Li D, et al, 2019.From ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations[J].Atmospheric Chemistry and Physics19(5): 3097-3124.DOI: 10.5194/acp-19-3097-2019 .
null
Li J Yu R C Yuan W H, et al, 2015.Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions[J].Journal of Advances in Modeling Earth Systems7(2): 774-790.DOI: 10.1002/2014MS000414 .
null
Mu?oz-Sabater J Dutra E Agustí-Panareda A, et al, 2021.ERA5-Land: a state-of-the-art global reanalysis dataset for land applications[J].Earth System Science Data13(9): 4349-4383.DOI: 10.5194/essd-13-4349-2021 .
null
Tarek M Brissette F P Arsenault R2020.Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America[J].Hydrology and Earth System Sciences24(5): 2527-2544.DOI: 10.5194/hess-24-2527-2020 .
null
Trenberth K E Olson J G1988.An evaluation and intercomparison of global analyses from national meteorological center and the European centre for medium range weather forecasts[J].Bulletin of the American Meteorological Society69(9): 1047-1057.DOI: 10.1175/1520-0477(1988)069<1047: AEAIOG>2.0.CO; 2 .
null
Wang C X Graham R M Wang K G, et al, 2019.Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution[J].The Cryosphere13(6): 1661-1679.DOI: 10.5194/tc-13-1661-2019 .
null
Wang Z Z Zhan C S Ning L, et al, 2021.Evaluation of global terrestrial evapotranspiration in CMIP6 models[J].Theoretical and Applied Climatology143(1): 521-531.DOI: 10.1007/s00704-020-03437-4 .
null
Yuan F Zhang L M Win K W W, et al, 2017.Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar[J].Remote Sensing9(3): 302.DOI: 10.3390/rs9030302 .
null
陈双, 孙继松, 何立富, 2022.四川盆地不同落区的三次强降水过程多尺度特征分析[J].高原气象41(5): 1190-1208.DOI: 10.7522/j.issn.1000-0534.2021.00060 .
null
董欣, 倪相, 2022.西南地区不同海拔极端降水时空变化特征[J].西南大学学报(自然科学版)44(9): 110-121.DOI: 10. 13718/j.cnki.xdzk.2022.09.012 .
null
高珩洲, 李国平, 2020.黔东南地形影响局地突发性暴雨的中尺度天气分析与数值试验[J].高原气象39(2): 301-310.DOI: 10.7522/j.issn.1000-0534.2019.00079 .
null
黄子立, 吴小飞, 毛江玉, 2021.CMIP6模式水平分辨率对模拟我国西南地区夏季极端降水的影响评估[J].高原气象40(6): 1470-1483.DOI: 10.7522/j.issn.1000-0534.2021.zk010 .
null
黄凌昕, 张帅, 陈婕, 等, 2021.中全新世青藏高原西南部异常高降水机制探讨[J].高原气象40(6): 1407-1418.DOI: 10.7522/j.issn.1000-0534.2021.zk022 .
null
江志红, 陈威霖, 宋洁, 等, 2009.7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估[J].大气科学33(1): 109-120.
null
李川, 陈静, 何光碧, 2006.青藏高原东侧陡峭地形对一次强降水天气过程的影响[J].高原气象25(3): 442-450.
null
李炳元, 潘保田, 韩嘉福, 2008.中国陆地基本地貌类型及其划分指标探讨[J].第四纪研究28(4): 535-543.
null
吕润清, 李响, 2021.ERA-Interim和ERA5再分析数据在江苏区域的适用性对比研究[J].海洋预报38(4): 27-37.DOI: 10. 11737/j.issn.1003-0239.2021.04.004 .
null
刘元波, 傅巧妮, 宋平, 等, 2011.卫星遥感反演降水研究综述[J].地球科学进展26(11): 1162-1172.
null
权晨, 周秉荣, 沈晓燕, 等, 2022.IMERG和GSMaP卫星降水产品在三江源区的适用性评估[J].高原山地气象研究42(1): 102-108.DOI: 10.3969/j.issn.1674-2184.2022.01.015 .
null
任芝花, 张强, 高峰, 等, 2018.CMA气象数据质量控制体系[J].气象科技进展8(1): 54-55.
null
宋海清, 朱仲元, 李云鹏, 2021.陆面同化及再分析降水资料在内蒙古地区的适用性[J].干旱区研究38(6): 1624-1636.DOI: 10.13866/j.azr.2021.06.14 .
null
唐豪, 王晓云, 陈伏龙, 等, 2022.基于ERA5-Land数据集的玛纳斯河径流模拟研究[J].地学前缘29(3): 271-283.DOI: 10. 13745/j.esf.sf.2022.1.50 .
null
温婷婷, 郭英香, 董少睿, 等, 2022.1979-2017年CRU、 ERA5、 CMFD格点降水数据在青藏高原适用性评估[J].干旱区研究39(3): 684-697.DOI: 10.13866/j.azr.2022.03.03 .
null
韦芬芬, 汤剑平, 王淑瑜, 2015.中国区域夏季再分析资料高空变量可信度的检验[J].地球物理学报58(2): 383-397.DOI: 10.6038/cjg20150204 .
null
王彩霞, 黄安宁, 郑鹏, 等, 2022.中国第一代全球陆面再分析(CRA40/Land)气温和降水产品在中国大陆的适用性评估[J].高原气象41(5): 1325-1334.DOI: 10.7522/j.issn.1000-0534.2021.00056 .
null
谢潇, 何金海, 祁莉, 2011.4种再分析资料在中国区域的适用性研究进展[J].气象与环境学报27(5): 58-65.
null
杨大文, 徐宗学, 李哲, 等, 2018.水文学研究进展与展望[J].地理科学进展37(1): 36-45.DOI: 10.18306/dlkxjz.2018.01.005 .
null
徐晶, 姚学祥, 2007.流域面雨量估算技术综述[J].气象33(7): 15-21.
null
岳书平, 闫业超, 张树文, 等, 2021.基于ERA5-LAND的中国东北地区近地表土壤冻融状态时空变化特征[J].地理学报76(11): 2765-2779.DOI: 10.11821/dlxb202111012 .
null
赵天保, 符淙斌, 柯宗建, 等, 2010.全球大气再分析资料的研究现状与进展[J].地球科学进展25(3): 242-254.
null
赵平伟, 李斌, 王佳妮, 等, 2021.GPM IMERG和ERA5降水数据精度在云南复杂地形区域的评估检验[J].气象科技49(1): 114-123.DOI: 10.19517/j.1671-6345.20190514 .
null
曾岁康, 雍斌, 2019.全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J].地理学报74(7): 1305-1318.DOI: 10.11821/dlxb201907003 .
Outlines

/