Influence and Mechanism of Indian Ocean Basin Model on the Asymmetry of Pacific Subtropical High in the Northern and Southern Hemispheres

  • Yuxin YANG ,
  • Chaoxia YUAN ,
  • Yan LI
Expand
  • 1. College of Atmospheric Sciences,Lanzhou University,Lanzhou 730030,Gansu,China
    2. School of Atmospheric Sciences,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China

Received date: 2022-10-15

  Revised date: 2023-02-13

  Online published: 2023-11-14

Abstract

Subtropical anticyclone has an important influence in weather and climate in China, which is affected by the tropical sea surface temperature (SST) anomaly in the Indian Ocean for its formation.However, there is limited studies for the corresponding influence mechanism.In order to probe impact as well as the mechanism of the SST anomaly over the Indian Ocean on the subtropical high, the El Nino-Southern Oscillation (ENSO) signal is filtered out.By using the reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NACR) from 1980 to 2020, this study tries to explore the influence and mechanism of the Indian Ocean basin model (IOBM) on subtropical high in the Pacific Ocean through dynamical diagnose in perspective of energy, and verifies the results by numerical model simulation by the Geophysical Fluid Dynamics Laboratory Atmospheric Model (GFDL AM2.1).The results show that eastern-spreading of the Kelvin wave is motivated by the SST anomaly in the Indian Ocean in summer.Meanwhile, low-level anticyclone anomaly appears in the northwest Pacific Ocean, resulting in the subtropical anticyclone is stronger than the climatological mean.Thus, the precipitation is less in regions from the South China Sea to Eastern Philippines.In winter, during the positive phase of the IOBM, the east wind anomalies are stimulated in Australia, resulting in large-area negative anomalies of precipitation occurred over the western Pacific.Non-uniform distribution of precipitation is caused by the asymmetry in circulation of subtropical high over the Pacific Ocean in the northern and southern hemispheres.Result by the dynamical diagnose reveals that when the phase of IOBM is positive, the wind field convergence zone is superposed by the disturbance energy growth area, whereas in winter such two regions do not cooperate with each other.As a result, the subtropical high is abnormally strong in the northwestern Pacific in summer and with indistinct abnormally in Australia in winter.The numerical simulation verifies that the asymmetry of anticyclonic circulation and precipitation anomalies are closely related to the symmetrical SST anomaly in Indian Ocean along the equator, both in its position and intensity.The result of model simulation demonstrates the reliability of the conclusions of synthesis analysis and energy diagnosis.Thus, the IOBM plays a significant role on the symmetrical structure of the Western Pacific subtropical high in northern and southern hemispheres, as well as in the precipitation in East Asia and Australia regions, which provides a theoretical basis for formation mechanism of the asymmetry of the Pacific subtropical high in the southern and northern hemisphere during the warming of the entire Indian Ocean basin.

Cite this article

Yuxin YANG , Chaoxia YUAN , Yan LI . Influence and Mechanism of Indian Ocean Basin Model on the Asymmetry of Pacific Subtropical High in the Northern and Southern Hemispheres[J]. Plateau Meteorology, 2023 , 42(6) : 1589 -1603 . DOI: 10.7522/j.issn.1000-0534.2023.00010

References

null
Gong Y Li T2021.Mechaniam for Southward shift of zonal wind anomalies during the mature phase of ENSO[J].Journal of Climate34(22): 8897-8911.DOI: 10.1175/JCLI-D-21-0078.1 .
null
Hu K M Huang G Huang R H2011.The impact of tropical Indian Ocean variability on summer surface air temperature in China[J].Journal of Climate, 24: 5365-5377.DOI: 10.1175/2011JCLI4152.1 .
null
Hu K M Huang G Qu X, et al, 2012.The impact of Indian Ocean variability on high temperature extremes across the southern of Yangtze River valley in late summer[J].Advances in Atmospheric Sciences, 29: 91-100.DOI: 10.1007/s00376-011-0209-2 .
null
Hu K M Huang G Wu R G2013.A strengthened influence of ENSO on August high temperature extremes over the southern Yangtze River valley since the late 1980s[J].Journal of Climate, 26: 2205-2221.DOI: 10.1175/JCLI-D-12-00277.1 .
null
Kanamitsu M Ebisuzaki W Woollen J, et al, 2002.NCEP-DOE AMIP-II Reanalysis (R-2)[J].Bulletin of the American Meteorologic at Society83(11): 1631-1644.DOI: 10.1175/Bams-83-11-1631 .
null
Kosaka Y Xie S P Nakamura H2011.Dynamics of interannual variability in summer precipitation over East Asia[J].Journal of Climate, 24: 5435-5453.DOI: 10.1175/2011JCLI4099.1 .
null
Kosaka Y Xie S P Lau N C, et al, 2013.Origin of seasonal predictability for summer climate over the northwestern Pacific[J].Proceedings of the National Academy of Science of the United States of America, 110: 7574-7579.DOI: 10.1073/pnas.1215582110 .
null
Lau K M Wu H T Bony S1997.The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature[J].Journal of Climate, 10: 381-392.DOI: 10.1175/1520-0442(1997)010<0381: TROLSA>2.0.CO; 2 .
null
Li J P Li Zhang2009.Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models[J].Climate Dynamic, 32: 935-968.DOI: 10.1007/s00382-008-0465-8 .
null
Seo K H Jung Ok Jun-Hyeok S, et al, 2013.Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models[J].Journal of Climate, 26: 7662-7675.DOI: 10. 1175/JCLI-D-12-00694.1 .
null
Song F Zhou T2014.Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean-western Pacific anticyclone teleconnection[J].Journal of Climate, 27: 1679-1697.DOI: 10.1175/JCLI-D-13-00248.1 .
null
Watanabe M Jin F F2003.A moist linear baroclinic model: coupled dynamical-convective response to El Ni?o[J].Journal of Climate, 16: 1121-1139.DOI: 10.1175/1520-0442(2003)16<1121: AMLBMC>2.0.CO; 2 .
null
Xie S P George S H1994.A coupled ocesn-atmosphere model or relevance to the ITCZ in the eastern Pacific[J].Tellus, 46: 340-350.DOI: 10.1034/j.1600-0870.1994.t01-1-00001.x .
null
Xie S P Hu K M Hafner J, et al, 2009.Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Ni?o[J].Journal of Climate, 22: 730-747.DOI: 10.1175/2008JCLI2544.1 .
null
Xie S P Kosaka Y2016.Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: a review[J].Advances in Atmospheric Sciences, 33: 256-1530.DOI: 10. 1007/s00376-015-5192-6 .
null
黄士松, 汤明敏, 1988.西北太平洋和南印度洋上环流系统的中期振荡与遥相关[J].气象科学, (4): 1-13.DOI: 10.3969/2012jms.00 .
null
黄刚, 胡开明, 屈侠, 等, 2016.热带印度洋海温海盆一致模的变化规律及其对东亚夏季气候影响的回顾[J].大气科学40(1): 121-130.DOI: 10.3878/j.issn.1006-9895.1505.15143 .
null
黄刚, 胡开明, 2008.夏季北印度洋海温异常对西北太平洋低层反气旋异常的影响[J].南京气象学院学报31(6): 749-757.DOI: 10.3969/j.issn.1674-7097.2008.06.001 .
null
李琰, 王庆元, 李欢, 等, 2014.前期热带太平洋、 印度洋持续性海温异常事件对菲律宾低层大气环流的影响[J].热带海洋学报33(1): 36-43.DOI: 10.11978/j.issn.1009-5470.2014.01.005 .
null
刘芸芸, 李维京, 左金清, 等, 2014.CMIP5 模式对西太平洋副热带高压的模拟和预估[J].气象学报72(2): 277-290.DOI: 10. 11676/qxxb2014.025 .
null
刘娜, 丑士连, 许海龙, 2012.印度洋海温异常对我国降水的影响初探[J].吉林气象, (3): 28-31+33.DOI: 10.3969/j.issn. 1006-5229.2012.03.009
null
钱代丽, 管兆勇, 王黎娟, 2009.近57a夏季西太平洋副高面积的年代际振荡及其与中国降水的联系[J].大气科学学报32(5): 677-685.DOI: 10.3969/j.issn.1674-7097.2009.05.012 .
null
钱代丽, 管兆勇, 2019.滤除ENSO信号前后夏季热带印度洋海盆尺度海温距平对西太平洋副热带高压的不同影响[J].气象学报77(3): 442-455.DOI: 10.11676/qxxb2019.030 .
null
孙舒悦, 任荣彩, 2015.ENSO与印度洋海盆海温多尺度相互作用及其对气候影响的研究进展[J].气象科技43(5): 858-865.DOI: 10.19517/j.1671-6345.2015.05.014 .
null
陶诗言, 徐淑英, 1962.夏季江淮流域持久性旱涝现象的环流特征[J].气象学报, (1): 1-10.DOI: 10.11676/qxxb1962.001 .
null
王成林, 邹力, 2004.西太平洋副热带高压的年际变率及其与ENSO的相关性[J].热带气象学报, (2): 137-144.DOI: 10. 3969/j.issn.1004-4965.2004.02.004 .
null
王旭栋, 管兆勇, 周游, 2017.夏半年热带太平洋中部型海温异常与热带印度洋海盆模对同期中国东部降水的共同影响[J].大气科学学报40(6): 737-748.DOI: 10.13878/ dqkxxb. 20160118001 .
null
吴国雄, 刘平, 刘屹岷, 等, 2000.印度洋海温异常对西太平洋副热带高压的影响——大气中的两级热力适应[J].气象学报, (5): 513-522.DOI: 10.11676/qxxb2000.054 .
null
汪婉婷, 管兆勇, 许琪, 等, 2017.夏季印度洋海盆模与MC区域降水异常联系的进一步分析[J].气象科学37(6): 709-717.DOI: 10.3969/2017jms.0025 .
null
杨建玲, 2007.热带印度洋海表面温度年际变化主模态对亚洲季风区大气环流的影响[D].青岛: 中国海洋大学, 1-157.
null
杨建玲, 李艳春, 穆建华, 等, 2015a.热带印度洋海温与西北地区东部降水关系研究[J].高原气象34(3): 690-699.DOI: 10. 7522/j.issn.1000-0534.2014.00010 .
null
杨建玲, 郑广芬, 王素艳, 等, 2015b.印度洋海盆模影响西北东部降水的大气环流分析[J].高原气象34(3): 700-705.DOI: 10.7522/j.issn.1000-0534.2014.00011 .
null
杨建玲, 胡海波, 穆建华, 等, 2017.印度洋海盆模影响西北东部5月降水的数值模拟研究[J].高原气象36(2): 510-516.DOI: 10.7522/j.issn.1000-0534.2016.00036 .
null
张人禾, 闵庆烨, 苏京志, 2017.厄尔尼诺对东亚大气环流和中国降水年际变异的影响: 西北太平洋异常反气旋的作用[J].中国科学(地球科学)47(5): 544-553.DOI: 10.1360/N072016-00268 .
null
曾刚, 孙照渤, 林朝晖, 等, 2010.不同海域海表温度异常对西北太平洋副热带高压年代际变化影响的数值模拟研究[J].大气科学34(2): 307-322.DOI: 10.3878/j.issn.1006-9895.2010. 02.06 .
Outlines

/