A Statistical Test of Station Thunderstorm Days Based on Lightning Location System and Its Evolution Characteristics

  • Bo PANG ,
  • Biao ZHU ,
  • Huihuang LAI ,
  • Binbin LIN ,
  • Bing LIU
Expand
  • 1. Fujian Key Laboratory of Severe Weather,Fuzhou 350028,Fujian,China
    2. State Key Laboratory of Disaster Weather,Chinese Academy of Meteorological Sciences,Beijing 100081,China
    3. Meteorological Disaster Prevention Technology Center of Fujian Province,Fuzhou 350028,Fujian,China
    4. Jiuxianshan Weather Station,Quanzhou Meteorological Bureau,Quanzhou 362599,Fujian,China

Received date: 2022-10-08

  Revised date: 2023-02-17

  Online published: 2023-11-14

Abstract

To research the continuity and climate evolution characters of station lightning data in Fujian Province, the paper established the calculation model based on Lightning Location System.The data sorted to thunderstorm days by observed(1982 -2013) and by Lighting Location System(2011 -2020) were used respectively.The paper determined the monitoring radius of lightning Location System that best matches the manual observation Combined with the T test and F test results.On this basis, the maximum penalty F test (PMFT)method was used to test the continuity of thunderstorm daily data from 66 stations in Fujian Province, and the passing rate under different monitoring radius and the mean square error of observation and monitoring were compared to obtain the optimal matching monitoring radius of Lightning Location System.Empirical Orthogonal Function (EOF) and 9-point smoothing coefficients were used to analyze the spatial and temporal evolution characteristics in Fujian Province during 1982 -2021 under the optimal matching radius and the factors influencing the activity pattern of thunderstorm days.The results show that: (1) The optimal matching radius between Lightning Location System is 12 km, and the passing rate (failed rate) of the (PMFT) test of 66 stations in the province is 80.30% (19.70%); (2) The spatial pattern of thunderstorm days in Fujian Province during 1982 -2021 is uneven, which are characterized that thunderstorm activity is stronger in the southwest then east coast, The spatial patterns of the three modes of EOF mainly include "province-wide Province- wide negative phase", "northeast- southwest Province-wide negative phase", and "inland coastal Province-wide negative phase".The first mode variance contribution rate is 55%, which can be the major mode, its 9-point smoothed curves and time coefficients characterize the Midwest and South have more lightning activity before 1998 and after 2016, and less lightning activity during 1998 -2016; (3) ENSO has a certain influence on the thunderstorm activity pattern in Fujian Province, and the correlation coefficients of ENSO, El Ni?o, La Ni?a and thunderstorm days in Fujian Province are 43.80%, 55.22% and 14.21% respectively.In summary, the 12 km radius can be used as an effective forecast basis and the optimal matching monitoring radius between manual observation and Lightning Location System leading to solve the problem of continuity of lightning data in Fujian Province.It is important to study the law of lightning activity for improving the ability of lightning disaster prevention.By comparing several kinds of climate events, El Nino has a great influence on the thunderstorm activity pattern in Fujian Province, which is considered as one of the important factors affecting the lightning activity pattern in Fujian Province.

Cite this article

Bo PANG , Biao ZHU , Huihuang LAI , Binbin LIN , Bing LIU . A Statistical Test of Station Thunderstorm Days Based on Lightning Location System and Its Evolution Characteristics[J]. Plateau Meteorology, 2023 , 42(6) : 1604 -1614 . DOI: 10.7522/j.issn.1000-0534.2023.00013

References

null
Kar S K Liou Y A Ha K J2009.Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea[J].Atmospheric Research92(1): 80-87.DOI: 10.1016/j.atmo-sres.2008.09.004 .
null
Lal D M Pawar S D2011.Effect of urbanization on lightning over four metropolitan cities of India[J].Atmospheric Environment45(1): 191-196.DOI: 10.1016/j.atmosenv.2010.09.027 .
null
Orville R E Weisman R Henderson R W, et al, 1991.Lightning Ground Flash Density in the Contiguous United States: 1992-95[J].Monthly Weather Review119(2): 573-577.DOI: 10. 1175/1520-0493(1997)1252.0.CO; 2 .
null
Saunders C P R Keith W D Mitzeva R P1991.The effect of liquid water on thunderstorm charging[J].Journal of Geophysical Research: Atmospheres, 96: 11007-11017.DOI: 10.1029/91JD00970 .
null
Tippett M K Allen J T Gensini V A, et al, 2015.Climate and hazardous convective weather[J].Current Climate Change Reports1(2): 60-73.DOI: 10.1007/s40641-015-0006-6 .
null
Ushio T Wu T Yoshida S2015.Review of recent progress in lightning and thunderstorm detection techniques in Asia[J].Atmospheric Research, 154: 89-102.DOI: 10.1016/j.atmosres. 2014. 10.001 .
null
Westcott, Nancy E1995.Summertime cloud-to-ground lightning activity around major Midwestern urban areas[J].Journal of Applied Meteorology34(7): 1633-1642.DOI: 10.1175/1520-0450-34.7.1633 .
null
Wang X L2008.Penalized maximal F Test for detecting undocumented mean shift without trend change[J].Journal of Atmospheric & Oceanic Technology25(3): 368-384.DOI: 10.1175/2007jtecha982.1 .
null
Cao D J Lu F Zhang X H, et al, 2021, Lightning Activity Observed by the FengYun-4A Lightning Mapping Imager[J].Remote Sensing13(15): 3013.DOI: 10.3390/rs13153013 .
null
Yuan T Di Y L Qie K2016.Variability of lightning flash and thunderstorm over East/Southeast Asia on the ENSO time scales[J].Atmospheric Research, 169: 377-390.DOI: 10.1016/j.atmosres. 2015.10.022 .
null
Zhang Q H, N X, Zhang F Q2017.Decreasing trend in severe weather occurrence over China during the past 50 years[J].Scientific Reports7(1): 42310.DOI: 10.1038/srep42310 .
null
曹丽娟, 鞠晓慧, 刘小宁, 2010.PMFT方法对我国年平均风速的均一性检验[J].气象36(10): 52-56.DOI: 10.7519/j.issn. 1000-0526.2010.10.008 .
null
高燚, 张义军, 张文娟, 等, 2012.我国雷击致人伤亡特征及易损度评估区划[J].应用气象学报23(3): 294-303.DOI: 10.7666/d.y1080191 .
null
孔锋, 郭君, 王一飞, 等, 2018.近56年来中国雷暴日数的时空分异特征[J].灾害学33(3): 87-95.DOI: 10.3969/j.issn.1000-811X. 2018.03.017 .
null
孔祥贞, 邱振峰, 赵阳, 等, 2021.雷暴活动与MLT区域金属Na层变化特征的统计研究[J].高原气象40(1): 219-228.DOI: 10.7522/j.issn.1000-0534.2020.00002 .
null
韩海涛, 王雅萍, 张瑾, 2021.中国西北地区台站迁移对气候资料均一性影响的研究进展[J].高原气象40(2): 448-454.DOI: 10.7522/j.issn.1000-0534.2020.00032 .
null
霍沛东, 马海鹏, 李京校, 等, 2018.北京市闪电定位数据与人工观测雷暴日关系研究[J].中国农学通报34(20): 118-125.
null
马明, 陶善昌, 祝宝友, 等, 2004.卫星观测的中国及周边地区闪电密度的气候分布[J].中国科学(地球科学)34(4): 298-306.
null
马明, 吕伟涛, 张义军, 等, 2008.1997-2006年我国雷电灾情特征[J].应用气象学报19(4): 393-400.DOI: 10.11898/1001-7313.20080402 .
null
覃彬全, 林巧, 骆方, 2021.基于半径的雷电资料选用分析[J].西南大学学报(自然科学版)43(6): 147-152.
null
王洁, 付桂琴, 武辉芹, 等, 2018.冀北电网灾害事故的时空分布特征及风险评价[J].干旱气象36(5): 879-883.DOI: 10. 11755/j.issn.1006-7639(2018)-05-0879 .
null
王学良, 张科杰, 张义军, 等, 2014.雷电定位系统与人工观测雷暴日数统计比较[J].应用气象学报25(6): 741-750.DOI: 10. 11898/1001-7313.20140610 .
null
王映思, 肖天贵, 董雪峰, 2021.1961-2019年中国西南地区夏季长周期旱涝急转与大气环流特征[J].高原气象40(4): 760-772.DOI: 10.7522/j.issn.1000-0534.2020.00067 .
null
许迎杰, 尹丽云, 邓勇, 等, 2008.低纬高原雷暴的气候特征分析[J].高原气象27(4): 888-895.
null
余海军, 陈水明, 朱建军, 等, 2012.雷电定位系统监测雷电日与人工记录雷电日的比较[J].高电压技术38(10): 2742-2748.
null
袁铁, 郄秀书, 2004.卫星观测到的我国闪电活动的时空分布特征[J].高原气象23(4): 488-494.
null
张鸿波, 郄秀书, 刘明远, 等, 2021.一次中尺度对流系统层云区域的电场探空观测和电荷结构研究[J].高原气象40(6): 1531-1541.DOI: 10.7522/j.issn.1000-0534.2021.zk004 .
null
朱华亮, 华连生, 温华洋, 等, 2020.ADTD数据计算雷暴日与目测雷暴日的均一性分析[J].干旱气象38(6): 1016-1022.DOI: 10.11755/j.issn.1006-7639(2020)-06-1016 .
null
曾金全, 朱彪, 王颖波, 等, 2015.基于雷电临近预警技术的主动防雷应用[J].应用气象学报26(5): 610-617.DOI: 10.11898/1001-7313.20150510 .
null
曾庆锋, 力梅, 兰红平, 等, 2018.闪电定位数据替代雷暴日人工观测初探[J].干旱气象36(5): 813-819.DOI: 10.11755/j.issn.1006-7639(2018)-05-0813 .
null
朱曦嵘, 邱飞, 丁旻, 等, 2013.册亨县闪电定位资料与人工观测雷暴日的对比分析[J].贵州气象37(): 73-74.DOI: 10.3969/j.issn.1003-6598.2013.z1.017 .
null
张烨方, 冯真祯, 曾金全, 等, 2014.福建省闪电监测数据与雷暴日关系分析及片状函数研究[J].自然灾害学报23(1): 183-190.
null
张义军, 孟青, 马明, 等, 2006.闪电探测技术发展和资料应用[J].应用气象学报17(5): 611-620.DOI: 10.11898/1001-7313. 20060504 .
null
中央气象局, 2003.地面气象观测规范[M].北京: 气象出版社.
Outlines

/