Analysis of the Dynamical Structure and Genesis of Two Different Life-History Eastward Moving Plateau
Received date: 2023-01-09
Revised date: 2023-06-10
Online published: 2023-04-24
The NCEP reanalysis data were utilized to diagnose the structural characteristics and evolutionary mechanisms of two plateau vortex processes that moved eastward out of the plateau on June 25-27, 2008 and June 4-10, 2013.The data were also used to explore the structural characteristics of the two long and short track plateau vortex processes and the influencing factors that caused their different life histories.The results show that: (1) During the Zhaduo vortex activity with a short path, the South Asian high pressure is flattened, the upper-level jet stream is southward and the plateau vortex moves out of the plateau in the slump trough.During the Qumalai vortex activity with a long path, the South Asian high pressure has a north arch, the plateau vortex is in the northwest airflow under the South Asian high-pressure ridge, the subtropical high is southward and the plateau vortex is strengthened with the eastward movement of the trough, accompanied by the eastward movement of the southwest vortex.(2) The two plateau vortex processes exhibit distinct structural characteristics, especially when the Zhaduo vortex is strengthened on the plateau and when the Qumalai vortex is strengthened again after coupling with the southwest vortex.The former vortex is in the deeper positive vorticity and upward motion layer at 600~350 hPa and also has the structural characteristics of strong divergence in the upper troposphere.The latter has the structural characteristics of high, middle, and low positive vorticity penetration in the troposphere, ascending movement in the troposphere, and weak divergence in the troposphere.(3) The diagnosis of total vorticity budget shows that the change of divergence term plays a decisive role in the change of total vorticity variability of low vortices.The strength change of Zhaduo vortex is consistent with the divergence term change.The influence of vertical transport term and horizontal advection term are strengthened during the accompaniment of Qumalai vortex with the southwest vortex.(4) Regarding the budget analysis of the 500 hPa positive vorticity variability in the central region of the vortex, the results show that when there is no activity of the southwest vortex, the plateau vortex contributes mainly to the 500 hPa positive vorticity variability of the plateau vortex due to convergence.When there is activity of the southwest vortex, the vertical transport of positive vorticity becomes more important with the superposition and companionship with the southwest vortex in the vertical direction.
Nini TU , Shuhua YU , Yueqing LI . Analysis of the Dynamical Structure and Genesis of Two Different Life-History Eastward Moving Plateau[J]. Plateau Meteorology, 2024 , 43(1) : 73 -87 . DOI: 10.7522/j.issn.1000-0534.2023.00048
null | |
null | |
null | |
null | 陈功, 李国平, 李跃清, 2012. 近 20年来青藏高原低涡的研究进展[J].气象科技进展, 2(2): 6-12.DOI: 10.3969/j.issn.2095-1973.2012.02.001.Chen G , |
null | |
null | 高文良, 郁淑华, 2007.高原低涡东移出高原的平均环流场分析[J].高原气象, 26(1): 206-212. |
null | |
null | 关良, 李栋梁, 2019.青藏高原低涡的客观识别及其活动特征[J].高原气象, 38(1): 55-65.DOI: 10.7522/j.issn.1000-0534. 2018.00067.Guan L , |
null | |
null | 何光碧, 2012.西南低涡研究综述[J].气象, 38(2): 155-163. |
null | |
null | 胡慧敏, 范广洲, 2019.高原涡东移与东亚夏季风的关系分析[J].高原山地气象研究, 39(4): 39-45.DOI: 10.3969/j.issn.1674-2184 ·2019.04.006. |
null | |
null | 蒋璐君, 李国平, 王兴涛, 2015.基于TRMM资料的高原涡与西南涡引发强降水的对比研究[J].大气科学, 39(2): 249-259.DOI: 10.3878/j.issn.1006-9895.1407.13260.Jiang L J , |
null | |
null | 李跃清, 郁淑华, 彭骏, 等, 2011.青藏高原低涡切变线年鉴(2008)[M].北京: 科学出版社, 1-272. |
null | |
null | 卢敬华, 1986.西南低涡概论[M].北京: 气象出版社.Lu J H, 1986.Introduction to southwest low vortex[M].Beijing: China Meteorological Press. |
null | 罗四维, 何梅兰, 刘晓东, 1993.关于夏季青藏高原低涡的研究[J].中国科学(化学), 23(7): 778-784. |
null | |
null | 马婷, 刘屹岷, 吴国雄, 等, 2020.青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析[J].大气科学, 44(3): 472-486.DOI: 10.3878/ j.issn.1006-9895.1904.18275.Ma T , |
null | |
null | 邱静雅, 李国平, 郝丽萍, 2015.高原涡与西南涡相互作用引发四川暴雨的位涡诊断[J].高原气象, 34(6): 1556-1565.DOI: 10.7522/j.issn.1000-0534.2014.00117.Qiu J Y , |
null | |
null | 容逸能, 马继望, 李瑶婷, 等, 2021.一次自上向下发展的高原涡的多尺度动力学分析[J].气象科技进展, 11(1): 7-18.DOI: 10.3969/j.issn.2095-1973.2021.01.003.Rong Y N , |
null | |
null | 魏栋, 刘丽伟, 田文寿, 等, 2021.基于卫星资料的西北地区高原涡强降水分析[J].高原气象, 40(4): 829-839.DOI: 10.7522/j.issn.1000-0534.2021.000021.Wei D , |
null | |
null | 肖玉华, 郁淑华, 高文良, 等, 2018.一例伴随西南涡的入海高原涡持续活动成因分析[J].高原气象, 37(6): 1616-1627.DOI: 10.7522/j.issn.1000-0534.2018.00043.Xiao Y H , |
null | |
null | 杨颖璨, 李跃清, 陈永仁, 2018.高原低涡东移加深过程的结构分析[J].高原气象, 37(3): 702-720.DOI: 10.7522/j.issn.1000-0534.2017.00054.Yang Y C , |
null | |
null | 叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社.Ye D Z, Gao Y X, 1979.Tibetan Plateau Meteorology[M].Beijing: Science Press. |
null | 郁淑华, 高文良, 2010.1998年夏季两例青藏高原低涡结构特征的比较[J].高原气象, 29(6): 1357-1368. |
null | |
null | 郁淑华, 高文良, 2018.冷空气对夏季高原涡移出高原后长久与短期活动影响的对比分析[J].大气科学, 42(6): 1297-1326.DOI: 10.3878/j.issn.1006-9895.1801.17207.Yu S H , |
null | |
null | 郁淑华, 2008.夏季青藏高原低涡研究进展述评[J].暴雨灾害, 27(4): 367-372. |
null | |
null | 赵玉春, 王叶红, 2010.高原涡诱生西南涡特大暴雨成因的个例研究[J].高原气象, 29(4): 819-831. |
null | |
null | 中国气象局成都高原气象研究所, 中国气象学会高原气象学委员会, 2015.青藏高原低涡切变线年鉴(2013)[M].北京: 科学出版社, 1-328.Chengdu Institute of Plateau Meteorology, China Meteorological Administration, Plateau Meteorology Committee of Chinese Meteorological Society, 2015.Yearbook of low vortex shear lines on the Tibetan Plateau (2013)[M].Beijing: Science Press. |
null | 周春花, 肖递祥, 郁淑华, 2022.持续东北移和在四川盆地停滞的九龙涡结构特征比较[J].高原气象, 41(5): 1220-1231.DOI: 10.7522/j.issn.1000-0534.2021.00044.Zhou C H , |
null | |
null | 朱爱军, 潘益农, 2007.中国东部地区一个中尺度对流涡旋的涡度收支分析[J].南京大学学报(自然科学版), 43(7): 260-269. |
null | |
null | 左园园, 郑佳锋, 贺婧姝, 等, 2022.一次高原涡过境的不同云-降水垂直结构和特征研究[J].高原气象, 41(5): 1251-1265.DOI: 10.7522/j.issn.1000-0534.2021.00059.Zuo Y Y , |
null |
/
〈 |
|
〉 |