Analysis of the Dynamical Structure and Genesis of Two Different Life-History Eastward Moving Plateau

  • Nini TU ,
  • Shuhua YU ,
  • Yueqing LI
Expand
  • 1. Chengdu Institute of Plateau Meteorology,Chengdu 610072,Sichuan,China
    2. Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province,China Meteorological Administration,Chengdu 610072,Sichuan,China

Received date: 2023-01-09

  Revised date: 2023-06-10

  Online published: 2023-04-24

Abstract

The NCEP reanalysis data were utilized to diagnose the structural characteristics and evolutionary mechanisms of two plateau vortex processes that moved eastward out of the plateau on June 25-27, 2008 and June 4-10, 2013.The data were also used to explore the structural characteristics of the two long and short track plateau vortex processes and the influencing factors that caused their different life histories.The results show that: (1) During the Zhaduo vortex activity with a short path, the South Asian high pressure is flattened, the upper-level jet stream is southward and the plateau vortex moves out of the plateau in the slump trough.During the Qumalai vortex activity with a long path, the South Asian high pressure has a north arch, the plateau vortex is in the northwest airflow under the South Asian high-pressure ridge, the subtropical high is southward and the plateau vortex is strengthened with the eastward movement of the trough, accompanied by the eastward movement of the southwest vortex.(2) The two plateau vortex processes exhibit distinct structural characteristics, especially when the Zhaduo vortex is strengthened on the plateau and when the Qumalai vortex is strengthened again after coupling with the southwest vortex.The former vortex is in the deeper positive vorticity and upward motion layer at 600~350 hPa and also has the structural characteristics of strong divergence in the upper troposphere.The latter has the structural characteristics of high, middle, and low positive vorticity penetration in the troposphere, ascending movement in the troposphere, and weak divergence in the troposphere.(3) The diagnosis of total vorticity budget shows that the change of divergence term plays a decisive role in the change of total vorticity variability of low vortices.The strength change of Zhaduo vortex is consistent with the divergence term change.The influence of vertical transport term and horizontal advection term are strengthened during the accompaniment of Qumalai vortex with the southwest vortex.(4) Regarding the budget analysis of the 500 hPa positive vorticity variability in the central region of the vortex, the results show that when there is no activity of the southwest vortex, the plateau vortex contributes mainly to the 500 hPa positive vorticity variability of the plateau vortex due to convergence.When there is activity of the southwest vortex, the vertical transport of positive vorticity becomes more important with the superposition and companionship with the southwest vortex in the vertical direction.

Cite this article

Nini TU , Shuhua YU , Yueqing LI . Analysis of the Dynamical Structure and Genesis of Two Different Life-History Eastward Moving Plateau[J]. Plateau Meteorology, 2024 , 43(1) : 73 -87 . DOI: 10.7522/j.issn.1000-0534.2023.00048

References

null
Tao S Y Ding Y H1981.Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China[J].Bulletin of the American Meteorological Society62(1): 23-30.
null
Wang B1987.The development mechanism for Tibetan Plateau warm vortices[J].Journal of the Atmospheric Sciences44(20): 2978-2994.
null
Ye D Z Wu G X1998.The role of the heat source of the Tibetan Plateau in the general circulation[J].Meteorology and Atmospheric Physics67(1): 181-198.
null
陈功, 李国平, 李跃清, 2012. 近 20年来青藏高原低涡的研究进展[J].气象科技进展, 2(2): 6-12.DOI: 10.3969/j.issn.2095-1973.2012.02.001.Chen G
null
Li G P Li Y Q2012.The research progress of the Tibetan Plateau vortex in recent twenty years[J].Advances in Meteorological Science and Technology2(2): 6-12.DOI: 10.3969/j.issn.2095-1973.2012.02.001 .
null
高文良, 郁淑华, 2007.高原低涡东移出高原的平均环流场分析[J].高原气象26(1): 206-212.
null
Gao W L Yu S H2007.Analyses on mean circulation field of the plateau low vortex moving out of Tibetan Plateau[J].Plateau Meteorology26(1): 206-212.
null
关良, 李栋梁, 2019.青藏高原低涡的客观识别及其活动特征[J].高原气象38(1): 55-65.DOI: 10.7522/j.issn.1000-0534. 2018.00067.Guan L
null
Li D L2019.Objective identifying and activity characteristics of Qinghai-Tibetan Plateau Vortex[J].Plateau Meteorology38(1): 55-65.DOI: 10.7522/j.issn. 1000-0534.2018.00067.
null
何光碧, 2012.西南低涡研究综述[J].气象38(2): 155-163.
null
He G B2012.Review of the southwest vortex research[J].Meteorological Monthly38(2): 155-163.
null
胡慧敏, 范广洲, 2019.高原涡东移与东亚夏季风的关系分析[J].高原山地气象研究39(4): 39-45.DOI: 10.3969/j.issn.1674-2184 ·2019.04.006.
null
Hu H M Fan G Z2019.Analysis on the relationship between the eastward shift of the Plateau Vortex and the East Asian Summer monsoon[J].Plateau and Mountain Meteorology Research39(4): 39-45.DOI: 10.3969/j.issn.1674-2184 ·2019.04.006.
null
蒋璐君, 李国平, 王兴涛, 2015.基于TRMM资料的高原涡与西南涡引发强降水的对比研究[J].大气科学39(2): 249-259.DOI: 10.3878/j.issn.1006-9895.1407.13260.Jiang L J
null
Li G P Wang X T2015.Comparative study based on TRMM data of the heavy rainfall caused by the Tibetan Plateau vortex and the southwest vortex[J].Chinese Journal of Atmospheric Sciences39(2): 249-259.DOI: 10.3878/j.issn.1006-9895.1407. 13260 .
null
李跃清, 郁淑华, 彭骏, 等, 2011.青藏高原低涡切变线年鉴(2008)[M].北京: 科学出版社, 1-272.
null
Li Y Q Yu S H Peng J, et al, 2011.Yearbook of low vortex shear lines on the Tibetan Plateau (2008)[M].Beijing: Science Press, 1-272.
null
卢敬华, 1986.西南低涡概论[M].北京: 气象出版社.Lu J H, 1986.Introduction to southwest low vortex[M].Beijing: China Meteorological Press.
null
罗四维, 何梅兰, 刘晓东, 1993.关于夏季青藏高原低涡的研究[J].中国科学(化学)23(7): 778-784.
null
Luo S W He M L Liu X D1993.A study on the Plateau Vortex over the Qinghai-Tibet Plateau in summer[J].Scientia Sinica (Chimica)23(7): 778-784.
null
马婷, 刘屹岷, 吴国雄, 等, 2020.青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析[J].大气科学44(3): 472-486.DOI: 10.3878/ j.issn.1006-9895.1904.18275.Ma T
null
Liu Y M Wu G X, et al, 2020.Effect of potential vorticity on the formation, development, and eastward movement of a Tibetan Plateau Vortex and its influence on downstream precipitation[J].Chinese Journal of Atmospheric Sciences44(3): 472-486.DOI: 10.3878/j.issn.1006-9895.1904.18275 .
null
邱静雅, 李国平, 郝丽萍, 2015.高原涡与西南涡相互作用引发四川暴雨的位涡诊断[J].高原气象34(6): 1556-1565.DOI: 10.7522/j.issn.1000-0534.2014.00117.Qiu J Y
null
Li G P Hao L P2015.Diagnostic analysis of potential vorticity on a heavy rain in Sichuan Basin under interaction between Plateau Vortex and Southwest Vortex[J].Plateau Meteorology34(6): 1556-1565.DOI: 10.7522/j.issn.1000-0534.2014.00117 .
null
容逸能, 马继望, 李瑶婷, 等, 2021.一次自上向下发展的高原涡的多尺度动力学分析[J].气象科技进展11(1): 7-18.DOI: 10.3969/j.issn.2095-1973.2021.01.003.Rong Y N
null
Ma J W Li Y T, et al, 2021.On the multiscale dynamics of a top-down developing vortex over Tibet Plateau[J].Advances in Meteorological Science and Technology11(1): 7-18.DOI: 10.3969/j.issn.2095-1973.2021.01.003 .
null
魏栋, 刘丽伟, 田文寿, 等, 2021.基于卫星资料的西北地区高原涡强降水分析[J].高原气象40(4): 829-839.DOI: 10.7522/j.issn.1000-0534.2021.000021.Wei D
null
Liu L W Tian W T, et al, 2021.Analysis of the heavy precipitation caused by Plateau Vortex in northwest China based on satellite data[J].Plateau Meteorology40(4): 829-839.DOI: 10.7522/j.issn.1000-0534. 2021.000021 .
null
肖玉华, 郁淑华, 高文良, 等, 2018.一例伴随西南涡的入海高原涡持续活动成因分析[J].高原气象37(6): 1616-1627.DOI: 10.7522/j.issn.1000-0534.2018.00043.Xiao Y H
null
Yu S H Gao W L, et al, 2018.Cause analysis of one sustained into the-sea Plateau Vortex accompanied by Southwest Vortex[J].Plateau Meteorology37(6): 1616-1627.DOI: 10.7522/j.issn.1000-0534.2018.00043 .
null
杨颖璨, 李跃清, 陈永仁, 2018.高原低涡东移加深过程的结构分析[J].高原气象37(3): 702-720.DOI: 10.7522/j.issn.1000-0534.2017.00054.Yang Y C
null
Li Y Q Chen Y R2018.The characteristic analysis of an eastwards Plateau Vortex by its strengthening process[J].Plateau Meteorology37(3): 702-720.D0I: 10.7522/j.issn.1000-0534.2017.00054.
null
叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社.Ye D Z, Gao Y X, 1979.Tibetan Plateau Meteorology[M].Beijing: Science Press.
null
郁淑华, 高文良, 2010.1998年夏季两例青藏高原低涡结构特征的比较[J].高原气象29(6): 1357-1368.
null
Yu S H Gao W L2010.Comparison on structure characteristics of two Tibetan Plateau Vortexes in summer, 1998[J].Plateau Meteorology29(6): 1357-1368.
null
郁淑华, 高文良, 2018.冷空气对夏季高原涡移出高原后长久与短期活动影响的对比分析[J].大气科学42(6): 1297-1326.DOI: 10.3878/j.issn.1006-9895.1801.17207.Yu S H
null
Gao W L2018.A comparative analysis of cold air influences on short-and long-time maintenance of the Tibetan Plateau vortex after it moves out of the plateau[J].Chinese Journal of Atmospheric Sciences42(6): 1297-1326.DOI: 10.3878/j.issn.1006-9895. 1801.17207 .
null
郁淑华, 2008.夏季青藏高原低涡研究进展述评[J].暴雨灾害27(4): 367-372.
null
Yu S H2008.New research advances of the Tibetan Plateau Vortex in Summer[J].Torrential Rain and Disasters27(4): 367-372.
null
赵玉春, 王叶红, 2010.高原涡诱生西南涡特大暴雨成因的个例研究[J].高原气象29(4): 819-831.
null
Zhao Y C Wang Y H2010.A case study on Plateau Vortex inducing Southwest Vortex and producing extremely heavy rain[J].Plateau Meteorology29(4): 819-831.
null
中国气象局成都高原气象研究所, 中国气象学会高原气象学委员会, 2015.青藏高原低涡切变线年鉴(2013)[M].北京: 科学出版社, 1-328.Chengdu Institute of Plateau Meteorology, China Meteorological Administration, Plateau Meteorology Committee of Chinese Meteorological Society, 2015.Yearbook of low vortex shear lines on the Tibetan Plateau (2013)[M].Beijing: Science Press.
null
周春花, 肖递祥, 郁淑华, 2022.持续东北移和在四川盆地停滞的九龙涡结构特征比较[J].高原气象41(5): 1220-1231.DOI: 10.7522/j.issn.1000-0534.2021.00044.Zhou C H
null
Xiao D X Yu S H2022.Comparison of the structural characteristics of the Jiulong Vortex continuing to move northeast and stagnating in the Sichuan Basin[J].Plateau Meteorology41(5): 1220-1231.DOI: 10.7522/j.issn.1000-0534.2021.00044 .
null
朱爱军, 潘益农, 2007.中国东部地区一个中尺度对流涡旋的涡度收支分析[J].南京大学学报(自然科学版)43(7): 260-269.
null
Zhu A J Pan Y N2007.A vorticity budget for a mesoscale convective vortex over east China[J].Journal of Nanjing University (Natural Science)43(7): 260-269.
null
左园园, 郑佳锋, 贺婧姝, 等, 2022.一次高原涡过境的不同云-降水垂直结构和特征研究[J].高原气象41(5): 1251-1265.DOI: 10.7522/j.issn.1000-0534.2021.00059.Zuo Y Y
null
Zheng J F Heng J S, et al, 2022.Study on the vertical structures and characteristics of different cloud precipitation types during a Qinghai-Xizang Plateau Vortex transit[J].Plateau Meteorology41(5): 1251-1265.DOI: 10.7522/j.issn.1000-0534.2021. 00059 .
Outlines

/