Spatial and Temporal Distribution Characteristics of Atmospheric Inversion in China
Received date: 2023-01-05
Revised date: 2023-07-10
Online published: 2023-07-10
Copyright
Atmospheric inversion plays an important role in meteorological research and air quality research.This study used ERA5 hourly temperature profile data from 2011 to 2020 to evaluate the low-level atmospheric inversion features of six regions, including Northwest China, North China, Northeast China, Southwest China, East China, and South China.In terms of daily variation, the temperature inversion frequency and intensity mostly peak at 07:00 (Beijing time, the same as after), the frequency and intensity of the inversion can reach 70% and 2 ℃, respectively, and the thickness of the inversion peaks mostly between 11:00 and 18:00.From the perspective of monthly variation, the temperature inversion characteristics of the sites all reach the maximum value in January to February and December, and the minimum value in June to August.The temperature inversion frequency of some sites in January can reach 90%, the temperature inversion intensity can reach more than 3 ℃, and the overall temperature inversion thickness is mostly concentrated between 200 and 400 m.When looking at annual variation, the majority of stations' temperature inversion characteristics show little change, and the annual variations in temperature inversion frequency, intensity, and thickness are about 10%, 0.4 ℃, and 60 m, respectively.While the temperature inversion features of the stations in East and South China do not clearly indicate an upward or downward trend, the stations in northeast China exhibit a general downward tendency.Ground radiative cooling, weather, and climate are the key factors that affect how temperature inversion features vary over time.Due to the effect of warm air brought by the circulation over the ocean, the coastal regions in northeast China, East China, and South China are more vulnerable to the creation of temperature inversions from the standpoint of geographical distribution.In comparison to Northwest China (23.4%), Southwest China (13.4%), and North China (21.84%), the regional average temperature inversion frequency was greater in each of those three regions (44.5%, 48.7%, and 48.65%, respectively).The temperature inversion intensity and thickness are the highest in northwest China, East China and coastal areas of South China.The temperature inversion intensity and temperature inversion thickness are above 1.5 ℃ and 300 m as a whole.The humid and cloudy environment in Southwest China is not conducive to the formation of temperature inversion layer, and the temperature inversion intensity and temperature inversion thickness are the smallest.For the subsequent analysis of the vertical buildup and diffusion of air pollutants in various locations of China, this work can serve as a scientific reference.
Chaoyue WAN , Tingting XU , Yan WANG , Shenlan LIU , Fumo YANG . Spatial and Temporal Distribution Characteristics of Atmospheric Inversion in China[J]. Plateau Meteorology, 2024 , 43(2) : 434 -449 . DOI: 10.7522/j.issn.1000-0534.2023.00058
特别感谢欧洲中期天气预报中心(ECMWF)提供的ERA5再分析数据, 网址为: https: //cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5- pressure-levels?tab=overview; 感谢中国气象科学研究院郭建平老师提供的2011 -2016年华北平原北京以及乐亭站点探空数据; 感谢美国怀俄明大学共享的探空数据, 网址为: Atmospheric Soundings (uwyo.edu)。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
丁旭, 赖欣, 范广洲, 2022.青藏高原春季土壤湿度异常与我国夏季降水的联系[J].高原气象, 41(1): 24-34.DOI: 10.7522/j.issn.1000-0534.2020.00094.Ding X ,
|
杜荣光, 齐冰, 郭惠惠, 等, 2011.杭州市大气逆温特征及对空气污染物浓度的影响[J].气象与环境学报, 27(4): 49-53.DOI: 10.3969/j.issn.1673-503X.2011.04.009.Du R G ,
|
郭丽娜, 黄容, 马艳, 2014.青岛逆温层特征及其对空气质量的影响分析[J].海岸工程, 33(4): 14-25.DOI: 10.3969/j.issn.1002-3682.2014.04.002.Guo L N ,
|
韩懿颖, 2022.中国南北过渡带分区及其地域分异研究[D].信阳: 信阳师范学院.Han Y Y, 2022.Study on the division and regional differentiation of the South-North transition zone in China [D].Xiyang: Xinyang Normal University.
|
黄庚, 李淑日, 德力格尔, 等, 2002.黄河上游云凝结核观测研究[J].气象, 28(10): 45-49.DOI: 10.7519/j.issn.1000-0526.2002.10.010.Huang G ,
|
黄建平, 刘玉芝, 王天河, 等, 2021.青藏高原及周边地区气溶胶、云和水汽收支研究进展[J].高原气象, 40(6): 1225-1240.DOI: 10.7522/j.issn.1000-0534.2021.zk012.Huang J P ,
|
李淑梅, 于宝忱, 1996.长春市逆温层及其对大气污染的影响分析[J].吉林气象(4): 29-31.Li S M, Yu B Z, 1996.Analysis of inversion layer and its influence on air pollution in Changchun City[J].Meteorological Disaster Prevention, (4): 29-31.
|
刘增强, 郑玉萍, 李景林, 等, 2007.乌鲁木齐市低空大气逆温特征分析[J].干旱区地理, 30(3): 351-356.DOI: 10.3321/j.issn: 1000-6060.2007.03.005.Liu Z Q ,
|
罗红羽, 于海鹏, 胡泽勇, 等, 2023.青藏高原热源对我国旱区气候异常影响研究进展[J].高原气象, 42(2): 257-271.DOI: 10.7522/j.issn.1000-0534.2022.00070.Luo H Y ,
|
容娜, 徐梓杰, 2019.克拉玛依区域逆温层特征分析[J].科技视界(17): 1-4, 37.DOI: 10.19694/j.cnki.issn2095-2457.2019.17. 001.Rong N , Xu Z J, 2019.Characteristics analysis of inversion layer in Karamay region[J].Science & Technology Vision(17): 1-4, 37.
|
王丽平, 段四波, 张霄羽, 等, 2021.2003-2018年中国地表温度年最大值的时空分布及变化特征[J].干旱区地理, 44(5): 1299-1308.DOI: 10.12118/j.issn.1000-6060.2021.05.11.Wang L P ,
|
王梦泽, 2021.全新世时期中国北方地区气候变化文献综述[J].中国资源综合利用, 39(5): 87-89.DOI: 10.3969/j.issn.1008-9500.2021.05.027.Wang M Z , 2021.Literature Review of climate change in northern China during the Holocene[J].China Resources Comprehensive Utilization, 39(5): 87-89.DOI: 10. 3969/j.issn.1008-9500.2021.05.027 .
|
吴佳, 吴婕, 闫宇平, 2022.1961-2020年青藏高原地表风速变化及动力降尺度模拟评估[J].高原气象, 41(4): 963-976.DOI: 10.7522/j.issn.1000-0534.2022.00065.Wu J ,
|
吴正华, 1999.中国气候变化及演变趋势[J].学会(5): 3-5.
|
杨耀先, 胡泽勇, 路富全, 等, 2022.青藏高原近60年来气候变化及其环境影响研究进展[J].高原气象, 41(1): 1-10.DOI: 10.7522/j.issn.1000-0534.2021.00117.Yang Y X ,
|
邹玉玲, 刘朝晖, 马亚维, 等, 2007.青岛低空逆温层特征分析[J].山东气象(1): 32-33.Zou Y L, Liu Z H, Ma Y W, et al, 2007.Characteristics analysis of low-altitude inversion layer in Qingdao[J].Journal of Shandong Meteorology (1): 32-33.
|
/
〈 |
|
〉 |