Research on Runoff Simulation over the Source Area of the Yellow River based on the Multiple Precipitation Products

  • Xiaoyue LI ,
  • Jun WEN ,
  • Yan XIE ,
  • Yaling CHEN ,
  • Yixuan CHEN ,
  • Xiangyu GE
Expand
  • 1. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,School of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China
    2. Yibin University,Yibin 644000,Sichuan,China

Received date: 2023-06-09

  Revised date: 2023-10-16

  Online published: 2023-10-16

Abstract

The Source Area of the Yellow River is located in the northeastern part of the Qinghai-Xizang Plateau, and the meteorological stations are sparsely distributed in this basin, the study of the applicability of various precipitation data products has an important values in promoting the hydrological modeling in the basin.Based on the China Meteorological Assimilation Datasets for SWAT model Version1.1 (CMADS V1.1), the Tropical Rainfall Measurement Mission (TRMM) precipitation datasets (3B42 Version7) and the Soil and Water Assessment Tool (SWAT) driven by these precipitation data, respectively, and the SWAT-CUP (SWAT Calibration and Uncertainty Program) and SUFI-2 (Sequential Uncertainty Fitting2) algorithm 27 sensitivity parameters were rate in simulating the variation of multi-year monthly average runoff, the simulated results were compared with the observations to evaluate the accuracy of CMADS and TRMM 3B42 precipitation data products and the applicability of SWAT model were evaluated in the Source Area of the Yellow River source area.The results show that: (1) The distribution of all three precipitation datasets showed an increasing trend from the west to the east, and TRMM 3B42 was in better agreement with the measured precipitation than CMADS data set in terms of annual and monthly variation.(2) The sensitivity analysis of the parameters showed that the sensitivity degree of SCS (Soil Conservation Service) runoff curve number, groundwater lagging coefficient, and soil evaporation compensation coefficient were stronger than that of the others.(3) The simulated runoff by using the CMADS and TRMM 3B42 precipitation datasets had better results than that by using the measured precipitation data, with the correlation coefficients R 2 of 0.93, 0.92 and 0.88 for the rate period at the three hydrological stations, respectively, while the results of the TRMM 3B42 simulation were the next best, with the coefficients of correlation (R) of the rate-period and validation-period of above 0.80, and the Nash-Sutcliffe efficiency coefficient (NSE) of the simulations is above 0.50.This research demonstrates the applicability of CMADS datasets and SWAT model for runoff simulation in high-altitude areas with complex landscape types and sensitive to climate change, and provides a replacement solution for improving the hydrological models in areas where there are sparely meteorological stations.

Cite this article

Xiaoyue LI , Jun WEN , Yan XIE , Yaling CHEN , Yixuan CHEN , Xiangyu GE . Research on Runoff Simulation over the Source Area of the Yellow River based on the Multiple Precipitation Products[J]. Plateau Meteorology, 2024 , 43(3) : 570 -582 . DOI: 10.7522/j.issn.1000-0534.2023.00086

References

null
Abbaspour K C Johnson C A Van Genuchten M T2004.Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure[J].Vadose Zone Journal3(4): 1340-1352.DOI: 10.2113/3.4.1340 .
null
Ayivi F Jha M K2018.Estimation of water balance and water yield in the Reedy Fork-Buffalo Creek Watershed in North Carolina using SWAT[J].International Soil and water conservation Research6(3): 203-213.DOI: 10.1016/j.iswcr.2018.03.007 .
null
Bera S Maiti R2021.Assessment of water availability with SWAT Model: a study on Ganga River[J].Journal of the Geological Society of India, 97: 781-788.DOI: 10.1007/s12594-021-1760-9 .
null
de Oliveira Serr?o E A Silva M T Ferreira T R, et al, 2022.Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model[J].International Journal of Sediment Research37(1): 54-69.DOI: 10.1016/j.ijsrc.2021.04.002 .
null
Galván L Olías M Izquierdo T, et al, 2014.Rainfall estimation in SWAT: an alternative method to simulate orographic precipitation[J].Journal of Hydrology, 509: 257-265.DOI: 10.1016/j.jhydrol.2013.11.044 .
null
Hou A Y Kakar R K Neeck S, et al, 2014.The global precipitation measurement mission[J].Bulletin of the American Meteorological Society95(5): 701-722.DOI: 10.1175/BAMS-D-13-00164.1 .
null
Hur J Raghavan S V Nguyen N S, et al, 2016.Evaluation of high-resolution satellite rainfall data over Singapore[J].Procedia Engineering, 154: 158-167.DOI: 10.1016/j.proeng.2016.07.437 .
null
Khodadoust S S Saghafian B Moazami S2017.Comprehensive evaluation of 3-hourly TRMM and half-hourly GPM-IMERG satellite precipitation products[J].International Journal of Remote Sensing38(2): 558-571.DOI: 10.1080/01431161.2016. 1268735 .
null
Lobligeois F Andréassian V Perrin C, et al, 2013.When does higher spatial resolution rainfall information improve streamflow simulation?An evaluation on 3620 flood events[J].Hydrology and Earth System Sciences Discussions10(10): 1-10.DOI: 10. 5194/hess-18-575-2014 .
null
Meng X Wang H Lei X, et al, 2017.Hydrological modeling in the Manas River Basin using soil and water assessment tool driven by CMADS[J].Tehnicki vjesnik-Technical Gazette24(2).DOI: 10.17559/TV-20170108133334 .
null
Moriasi D N Arnold J G Van L M W, et al, 2007.Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J].Transactions of the ASABE50(3): 885-900.DOI: 10.13031/2013.23153 .
null
Osei M A Amekudzi L K Wemegah D D, et al, 2019.The impact of climate and land-use changes on the hydrological processes of Owabi catchment from SWAT analysis[J].Journal of Hydrology: Regional Studies, 25: 100620.DOI: 10.1016/j.ejrh.2019.100620 .
null
Ridwansyah I Yulianti M Onodera S, et al, 2020.The impact of land use and climate change on surface runoff and groundwater in Cimanuk watershed, Indonesia[J].Limnology, 21: 487-498.DOI: 10.1007/s10201-020-00629-9 .
null
Schaefli B Gupta H V2007.Do Nash values have value?[J].Hydrological processes, 21: 2075-2080.DOI: 10.1002/hyp.6825 .
null
Tan M L Tan K C Chua V P, et al, 2017.Evaluation of TRMM product for monitoring drought in the Kelantan River Basin, Malaysia[J].Water9(1): 57.DOI: 10.3390/w9010057 .
null
Ward E Buytaert W Peaver L, et al, 2011.Evaluation of precipitation products over complex mountainous terrain: a water resources perspective[J].Advances in water resources34(10): 1222-1231.DOI: 10.1016/j.advwatres.2011.05.007 .
null
White E D Easton Z M Fuka D R, et al, 2011.Development and application of a physically based landscape water balance in the SWAT model[J].Hydrological Processes25(6): 915-925.DOI: 10.1002/hyp.7876 .
null
Yang J Reichert P Abbaspour K C, et al, 2008.Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China[J].Journal of hydrology358(1-2): 1-23.DOI: 10.1016/j.jhydrol.2008.05.012 .
null
成璐, 沈润平, 师春香, 等, 2014.CMORPH和TRMM 3B42降水估计产品的评估检验[J].气象40(11):1372-1379.DOI:10.7519/j.issn.1000-0526.2014.11.010.Cheng L
null
Shen R P Shi C X, et al, 2014.Evaluation and verification of CMORPH and TRMM 3B42 precipitation estimation products[J].Meteorological Monthly40(11):1372-1379.DOI:10.7519/j.issn. 1000-0526.2014.11.010 .
null
高燕, 2019.基于SWAT模型的流域土壤侵蚀及POC入海通量研究———以我国南方地区为例[D].南京:南京师范大学, 1-127.DOI:10.27245/d.cnki.gnjsu.2019.000634.Gao Y , 2019.Study on soil erosion and POC flux into sea basin based on SWAT Model-a case study in southern China[D].Nanjing:Nanjing Normal University, 1-127.DOI:10.27245/d.cnki.gnjsu. 2019. 000634 .
null
贾何佳, 李谢辉, 文军, 等, 2022.黄河源区径流变化模拟及未来趋势预估[J].资源科学44(6):1292-1304.DOI:10.18402/resci.2022.06.15.Jia H J
null
Li X H Wen J, et al, 2022.Runoff change simulation and future trend projection in the source area of the Yellow River[J].Resources Science44(6):1292-1304.DOI:10.18402/resci.2022.06.15 .
null
郭敏, 方海燕, 李致颖, 2016.基于SWAT东北黑土区乌裕尔河流域径流模型模拟[J].水土保持研究23(4):43-47+54.DOI:10.13869/j.cnki.rswc.2016.04.007.Guo M
null
Fang H Y Li Z Y2016.SWAT model-based runoff simulation of Wuyuer River Basin in the Black Soil Region of Northeast China[J].Research of Soil and Water Conservation23(4):43-47+54.DOI:10.13869/j.cnki.rswc.2016.04.007 .
null
蒋宗立, 刘时银, 郭万钦, 等, 2018.黄河源区阿尼玛卿山典型冰川表面高程近期变化[J].冰川冻土40(2):231-237.DOI:10.7522/j.issn.1000-0240.2018.0027.Jiang Z L
null
Liu S Y Guo W Q, et al, 2018.Recent surface elevation changes of three representative glaciers in Anyemagen Mountains, source region of Yellow River[J].Journal of Glaciology and Geocryology40(2):231-237.DOI:10.7522/j.issn.1000-0240.2018.0027 .
null
李江苏, 孙威, 余建辉, 2020.黄河流域三生空间的演变与区域差异——基于资源型与非资源型城市的对比[J].资源科学42(12):2285-2299.DOI:10.18402/resci.2020.12.03.Li J S
null
Sun W Yu J H2020.Change and regional differences of production-living-ecological space in the Yel low River Basin:Based on comparative analysis of resource-based and non-resource--based cities[J].Resources Science42(12):2285-2299.DOI:10.18402/resci.2020.12.03 .
null
刘俊, 刘时银, 上官冬辉, 等, 2017.CMADS、ITPCAS和TRMM 3B423套降水数据集在玉龙喀什河流域的适用性评价[J].华北水利水电大学学报(自然科学版)38(5):28-37.DOI:10.3969/j.issn.1002-5634.2017.05.004.Liu J
null
Liu S Y Shangguan D H, et al, 2017.Applicability evaluation of precipitation datasets from CMADS, ITPCAS and TRMM 3B42 in Yurungkax River Basin[J].Journal of North China University of Water Resources and Electric Power (Natural Science Edition)38(5):28-37.DOI:10.3969/j.issn.1002-5634.2017.05.004 .
null
刘兆晨, 杨梅学, 万国宁, 等, 2021.新型卫星降水产品在黄河源区的适用性分析——以SWAT模型为例[J].高原气象40(2):403-410.DOI:10.7522/j.issn.1000-0534.2020.00024.Liu Z C
null
Yang M X Wan G N, et al, 2021.Applicability of new satellites precipitation products in source region of Yellow River:using SWAT model as an example[J].Plateau Meteorology40(2):403-410.DOI:10.7522/j.issn.1000-0534.2020.00024 .
null
孟现勇, 师春香, 刘时银, 等, 2016.CMADS数据集及其在流域水文模型中的驱动作用——以黑河流域为例[J].人民珠江37(7):1-19.DOI:10.3969/j.issn.1001-9235.2016.07.001.Meng X Y
null
Shi C X Liu S Y, et al, 2016.CMADS datasets and its application in watershed hydrological simulation:a case study of the Heihe River Basin[J].Pearl River37(7):1-19.DOI:10.3969/j.issn.1001-9235.2016.07.001 .
null
秦大河, 丁一汇, 苏纪兰, 等, 2005.中国气候与环境演变评估(I):中国气候与环境变化及未来趋势[J].气候变化研究进展1(1):4-9.DOI:10.3969/j.issn.1673-1719.2005.01.002.Qin D H
null
Ding Y H Su J L, et al, 2005.Assessment of climate and environment changes in china (Ⅰ):Climate and environment changes in China and their projection[J].Climate Change Research1(1):4-9.DOI:10.3969/j.issn.1673-1719.2005.01.002 .
null
荣易, 秦成新, 杜鹏飞, 等, 2021.基于模型研究质量评价的SWAT模型参数取值特征分析[J].环境科学42(6):2769-2777.DOI:10.13227/j.hjkx.202010216.Rong Y
null
Qin C X Du P F, et al, 2021.Characteristic analysis of SWAT model parameter values based on assessment of model research quality[J].Environmental Science42(6):2769-2777.DOI:10.13227/j.hjkx. 202010216 .
null
王莺, 张强, 王劲松, 等, 2017.基于分布式水文模型(SWAT)的土地利用和气候变化对洮河流域水文影响特征[J].中国沙漠37(1):175-185.DOI:10.7522/j.issn.1000-649X.2015.00189.Wang Y
null
Zhang Q Wang J S, et al, 2017.Appling SWAT model to explore the impacts of land use and climate changes on the hydrological characteristics in Taohe River Basin[J].Journal of Desert Research37(1):175-185.DOI:10.7522/j.issn.1000-649X.2015.00189 .
null
王中根, 夏军, 刘昌明, 等, 2007.分布式水文模型的参数率定及敏感性分析探讨[J].自然资源学报22(4):649-655.DOI:10.11849/zrzyxb.2007.04.015.Wang Z G
null
Xia J Liu C M, et al, 2007.Comments on sensitivity analysis, calibration of distributed hydrological model[J].Journal of Natural Resources22(4):649-655.DOI:10.11849/zrzyxb.2007.04.015 .
null
王中根, 刘昌明, 吴险峰, 2003.基于DEM的分布式水文模型研究综述[J].自然资源学报18(2):168-173.DOI:10.3321/j.issn:1000-3037.2003.02.007.Wang Z G
null
Liu C M Wu X F2003.A review of the studies on distributed hydrological model based on DEM[J].Journal of Natural Resources18(2):168-173.DOI:10.3321/j.issn:1000-3037.2003.02.007 .
null
魏丹, 刘智勇, 李小冰, 2012.SWAT模型及SUFI-2算法在秃尾河上游流域径流模拟中的应用[J].干旱地区农业研究30(6):200-206.DOI:10.3969/j.issn.1000-7601.2012.06.034.Wei D
null
Liu Z Y Li X B2012.The application of SWAT and SUFI-2 to runoff simulation in Tuweihe (Upper) watershed[J].Agricultural Research in the Arid Areas30(6):200-206.DOI:10.3969/j.issn.1000-7601.2012.06.034 .
null
文军, 蓝永超, 苏中波, 等, 2011.黄河源区陆面过程观测和模拟研究进展[J].地球科学进展26(6):575-585.DOI:10.11867/j.issn.1001-8166.2011.06.0575.Wen J
null
Lan Y C Su Z B, et al, 2011.Advances in observation and modeling of land surface processes over the source region of the Yellow River[J].Advances in Earth Science26(6):575-585.DOI:10.11867/j.issn.1001-8166.2011.06.0575 .
null
武月月, 文军, 王作亮, 等, 2022.黄河源高寒草原下垫面土壤冻融过程中陆-气间的水热交换特征分析[J].高原气象41(1):132-142.DOI:10.7522/j.issn.1000-0534.2021.00014.Wu Y Y
null
Wen J Wang Z L, et al, 2022.The characteristics of land‐atmospheric water and heat exchange during soil freezing‐thawing process over the underlying surface of the alpine grassland in the source region of the Yellow River[J].Plateau Meteorology41(1):132-142.DOI:10.7522/j.issn.1000-0534. 2021.00014 .
null
徐洪亮, 常娟, 郭林茂, 等, 2021.青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J].高原气象40(2):229-243.DOI:10.7522/j.issn.1000-0534.2020.00071.Xu H L
null
Chang J Guo L M, et al, 2021.Response of thermal-moisture condition within active layer in the hinterland of the Qinghai-Xizang Plateau to climate chang[J].Plateau Meteorology40(2):229-243.DOI:10.7522/j.issn.1000-0534.2020.00071 .
null
严登华, 袁喆, 王浩, 等, 2013.水文学确定性和不确定性方法及其集合研究进展[J].水利学报44(1):73-82.DOI:10.13243/j.cnki.slxb.2013.01.004.Yan D H
null
Yuan Z Wang H, et al, 2013.Progress of certainty and uncertainty methods of hydrologic and the framework of ensemble analysis[J].Journal of Hydraulic Engineering44(1):73-82.DOI:10.13243/j.cnki.slxb.2013. 01.004 .
null
杨泽康, 田佳, 李万源, 等, 2021.黄河流域生态环境质量时空格局与演变趋势[J].生态学报41(19):7627-7636.DOI:10.5846/stxb202012083131.Yang Z K
null
Tian J Li W Y, et al, 2021.Spatio-temporal pattern and evolution trend of ecological environment quality in the Yellow River Basin[J].Acta Ecologica Sinica41(19):7627-7636.DOI:10.5846/stxb202012083131 .
null
姚檀栋, 邬光剑, 徐柏青, 等, 2019.“亚洲水塔”变化与影响[J].中国科学院院刊34(11):1203-1209.DOI:10.16418/j.issn. 1000-3045.2019.11.003.Yao T D
null
Wu G J Xu B Q, et al, 2019.Asian water tower change and its impacts[J].Bulletin of Chinese Academy of Sciences34(11):1203-1209.DOI:10. 16418/j.issn.1000-3045.2019.11.003 .
null
张北赢, 徐学选, 刘文兆, 等, 2008.黄土丘陵沟壑区不同降水年型下土壤水分动态[J].应用生态学报19(6):1234-1240.DOI:10.13287/j.1001-9332.2008.0240.Zhang B Y
null
Xu X X Liu W Z, et al, 2008.Dynamic changes of soil moisture in loess hilly and gully region under effects of different yearly precipitation patterns[J].Chinese Journal of Applied Ecology19(6):1234-1240.DOI:10.13287/j.1001-9332.2008.0240 .
Outlines

/