Analysis on Spatio-Temporal Variability of Fractional Vegetation Cover and Influencing Factors from 2000 to 2020 in Southwestern China
Received date: 2023-02-08
Revised date: 2023-06-11
Online published: 2023-06-11
The southwestern China is a vital ecological safeguard and is characterized by ecological fragility and climate sensitivity.Based on the MOD13A3 NDVI dataset, this study used a pixel dichotomy model to calculate the average Fractional Vegetation Cover (FVC) from 2000 to 2020 annually, during growing seasons, and in each of the four seasons for the whole southwestern China and its provinces, a spatio-temporal variation analysis was then performed on FVC across different time scales.The study also discussed the primary factors influencing FVC changes over the past 21 years, using ERA5 temperature data, GPCP satellite precipitation data, and DEM data.Finally, the Hurst Index was used to predict future FVC trends.(1) The results indicate that from 2000 to 2020, the overall FVC in the eastern part of the southwestern China showed an increasing trend, particularly in Chongqing and Guizhou, while Tibet showed a general decline.(2) Spatially, the FVC generally showed a "higher in the east and lower in the west" trend, with areas where FVC increased accounting for 43.9% of the total area, and areas of decrease accounting for 53.5%.(3) Precipitation promotes FVC, while temperature has varied effects in different regions.(4) Human activity significantly impacts FVC, with promotion, suppression, and no effect zones accounting for 40.4%, 47.6%, and 12.0% of the grid percentage, respectively.(5) Elevation and FVC over different time scales are significantly correlated but both exhibit a pronounced declining trend.FVC increases significantly with slope, but decreases when the slope is greater than 25°.The effect of aspect on FVC in the southwestern China is less significant than that of slope, elevation, and climatic factors.(6) In the future, the FVC in Tibet and the eastern parts of Sichuan, Yunnan, and Guizhou in the southwestern China will increase, while most areas of western Sichuan and the Hengduan Mountains will exhibit a decreasing trend.The results can provide data support and scientific guidance for the formulation of ecological protection plans in the southwestern China.
Yuting LIU , Lei WANG , Xiehui LI , Lei GUO . Analysis on Spatio-Temporal Variability of Fractional Vegetation Cover and Influencing Factors from 2000 to 2020 in Southwestern China[J]. Plateau Meteorology, 2024 , 43(1) : 264 -276 . DOI: 10.7522/j.issn.1000-0534.2023.00052
null | |
null | |
null | IPCC, 2021.Climate change 2021 the physical science basis[M/OL].[2021-08-01]. |
null | |
null | |
null | |
null | |
null | 鲍艳, 魏宇晨, 南素兰, 等 |
null | 鲍艳, 王玉琦, 南素兰, 等 |
null | 代仁丽, 2022.气候因子与不同下垫面对西南地区植被NDVI变化的影响研究[D].贵阳: 贵州师范大学.Dai R L, 2022.Study on the influence of climate factors and different substrates on the change of NDVI of vegetation in southwest China[D].Guiyang: Guizhou Normal University. |
null | 丰博, 董燕, 2022.2010-2020年云南省植被覆盖度时空变化及其地形效应[J].浙江林业科技, 42(3): 23-32.DOI: 10.3969/j.issn.1001-3776.2022.03.004.Feng B , |
null | |
null | 何清芸, 牟凤云, 李秋彦, 等, 2021.重庆植被覆盖度时空演变及驱动力地理学探究[J].科学技术与工程, 21(28): 11955-11962.DOI: 10.3969/j.issn.1671-1815.2021.28.008.He Q Y , |
null | |
null | 金凯, 王飞, 韩剑桥, 等, 2020.1982-2015年中国气候变化和人类活动对植被NDVI变化的影响[J].地理学报, 75(5): 961-974. |
null | |
null | 李晶, 闫星光, 闫萧萧, 等, 2021.基于GEE云平台的黄河流域植被覆盖度时空变化特征[J].煤炭学报, 46(5): 1439-1450.DOI: 10.13225/j.cnki.jccs.ST21.0331.Li J , |
null | |
null | 李苗苗, 2003.植被覆盖度的遥感估算方法研究[D].北京: 中国科学院研究生院(遥感应用研究所).Li M M, 2003.The method of vegetation fraction estimation by remote sensing[D].Beijing: Graduate School of Chinese Academy of Sciences |
null | Institute of Remote Sensing Applications, Chinese Academy of Sciences. |
null | 刘坤, 袁新, 肖寒予, 等, 2022.2000-2019年西藏草地植被覆盖度对气温和降水变化的响应[J].中国资源综合利用, 40(5): 95-99+103.DOI: 10.3969/j.issn.1008-9500.2022.05.028.Liu K , |
null | |
null | 缪利, 陆晴, 刘根林, 等, 2023.1999-2019年青藏高原不同植被类型NDVI时空演变特征及其对气候因子的响应[J].水土保持研究, 30(1): 97-105.DOI: 10.13869/j.cnki.rswc.2023.01.027.Miao L , |
null | |
null | 彭睿文, 罗娅, 余军林, 等, 2017.中国西南地区2009-2015年植被覆盖度变化及其与降雨的关系[J].贵州师范大学学报(自然科学版), 35(5): 15-23.DOI: 10.16614/j.cnki.issn1004-5570.2017.05.003.Peng R W , |
null | |
null | 孙红雨, 王长耀, 牛铮, 等, 1998.中国地表植被覆盖变化及其与气候因子关系-基于NOAA时间序列数据分析[J].遥感学报, 2(3): 204-210. |
null | |
null | 汤国安, 2019.中国数字高程图(1 km)[DS].北京: 国家青藏高原科学数据中心.[2022.06-12.].https: //www.tpdc.ac.cn/zh-hans/data/12e91073-0181-44bf-8308-c50e5bd9a734/.Tang G A, 2019.Digital elevation map of China (1 km) [DS].Beijing: National Tibetan Plateau Scientific Data Center.[2022.06-12.]. |
null | 汤巧英, 戚德辉, 宋立旺, 等, 2017.基于GIS和RS的延河流域植被覆盖度与地形因子的相关性研究[J].水土保持研究, 24(4): 198-203.DOI: 10.13869/j.cnki.rswc.2017.04.033.Tang Q Y , |
null | |
null | 王晓蕾, 石守海, 陈江朝霞, 2022.黄河流域植被覆盖度变化及驱动因素研究[J].中国环境科学, 2022, 42(11): 5358-5368.DOI: 10.19674/j.cnki.issn1000-6923.20220712.002.Wang X L , |
null | |
null | 王洁, 2019.面向作物长势监测的Hurst指数算法改进及其应用[D].南京: 南京信息工程大学.Wang J, 2019.Improvement and application of Hurst Index Algorithms for crop growth monitoring[D].Nanjing: Nanjing University of Information Science & Technology. |
null | 熊巧利, 何云玲, 李同艳, 等, 2019.西南地区生长季植被覆盖时空变化特征及其对气候与地形因子的响应[J].水土保持研究, 26(6): 259-266.DOI: 10.13869/j.cnki.rswc.2019.06.034.Xiong Q L , |
null | |
null | 张一然, 文小航, 罗斯琼, 等, 2022.近20 年若尔盖湿地植被覆盖变化与气候因子关系研究[J].高原气象, 41(2): 317-327.DOI: 10.7522/j.issn.1000-0534.2021.00076.Zhang Y R , |
null | |
null | 张志强, 刘欢, 左其亭, 等, 2021.2000-2019年黄河流域植被覆盖度时空变化[J].资源科学, 43(4): 849-858.DOI: 10.18402/resci.2021.04.18.Zhang Z Q , |
null | |
null | 郑朝菊, 曾源, 赵玉金, 等, 2016.20世纪90年代以来中国西南地区土地覆被变化[J].生态学报, 36(23): 7858-7869.DOI: 10.5846/stxb201511102277.Zheng Z J , |
null | |
null | 赵慧芳, 曹晓云, 2022.三江源国家公园植被覆盖度时空变化及其气候驱动因素[J].高原气象, 41(2): 328-337.DOI: 10.7522/j.issn.1000-0534.2021.00091.Zhao H F , |
null | |
null | 赵丹, 王祖伟, 张国壮, 等, 2022.因子回归和交互联合探索区域植被覆盖度的影响因素—以三江源地区为例[J].中国环境科学, 42(8): 3903-3912.DOI: 10.19674/j.cnki.issn1000-6923.20220329.011.Zhao D , |
null |
/
〈 |
|
〉 |