Mesoscale Numerical Simulation and Cloud Microphysical Characteristics of the Warm Zone Blizzard in Northern Xinjiang
Received date: 2022-10-09
Revised date: 2023-05-06
Online published: 2024-01-11
The warm zone blizzard are both infrequent and highly destructive, making their accurate prediction a challenging and crucial focus.This study utilized four distinct cloud microphysics schemes (Lin, Thompson, WDM6, and WSM6) within the WRF mesoscale model to conduct a numerical simulation of a typical warm zone blizzard process in the northern Xinjiang in the middle of November 2016.The research objectives encompassed the evaluation of the model's capacity to simulate the warm zone blizzard, the selection of an optimal parameterization scheme, an analysis of the vertical distribution and evolution of hydrometeors during the snowstorm, and an exploration of the developmental patterns of related mesoscale systems contributing to the snowstorm.The analysis yielded the following key findings: (1) Among the diverse cloud microphysics parameterization schemes tested, the Lin scheme demonstrated the most favorable performance, effectively simulating snowfall magnitudes, spatial distributions, and trends.(2) In the cloud, all kinds of water condensate particles are active in the lower and middle troposphere, with graupel and snow being the most.Ice crystals, snow, cloud water and graupel particles are distributed from the upper layer to the lower layer.Near the windward slope of Altai Mountain is the center of the large concentration of each water condensate particle.The vertical alignment of the high value center of the four kinds of cloud water condensate particles in the strong snowfall area is conducive to the transformation of each particle.(3) High-humidity systems upstream moved westward, with the intensification of low-level southward jet streams resulting in pronounced moisture convergence.The western foothills of the Altai Mountains acted as a barrier, promoting moisture convergence by blocking the windward side; The low-level southerly jet also provides a continuous updraft and unstable condition for the generation of the blizzard.Strong snowfall is located in a wide updraft area between two groups of secondary circulations.The explosive growth of vertical movement is conducive to triggering the release of unstable energy, providing strong dynamic lifting conditions for the development and maintenance of the blizzard.
Anbei LI , Chenxiang JU , Yaman ZHOU , Man LI , Ruqi LI . Mesoscale Numerical Simulation and Cloud Microphysical Characteristics of the Warm Zone Blizzard in Northern Xinjiang[J]. Plateau Meteorology, 2024 , 43(1) : 127 -140 . DOI: 10.7522/j.issn.1000-0534.2023.00040
null | |
null | |
null | |
null | |
null | 陈涛, 崔彩霞, 2012.“2010.1.6”新疆北部特大暴雪过程中的锋面 结构及降水机制[J].气象, 38(8): 921-931. |
null | |
null | 冯丽莎, 宋攀, 郑飞, 等, 2020.2016年初冬河南区域暴雪过程诊断分析[J].大气科学, 44(1): 13-26. |
null | |
null | 黄海波, 陈春艳, 朱雯娜, 2011.WRF 模式不同云微物理参数化方案及水平分辨率对降水预报效果的影响[J].气象科技, 39(5): 529-536. |
null | |
null | 金妍, 李国平, 2021.爬流和绕流对山地突发性暴雨的影响[J].高原气象, 40(2): 314-323.DOI: 10.7522/j.issn.1000-0534. 2020.00041.Jin Y , |
null | |
null | 李桉孛, 李如琦, 李娜, 等, 2020.新疆北部持续暖区暴雪过程动力特征分析[J].沙漠与绿洲气象, 14(5): 53-60. |
null | |
null | 李娜, 李如琦, 秦贺, 等, 2020.2018 年 10 月乌鲁木齐暴雪过程锋面分析[J].沙漠与绿洲气象, 14(5): 36-43. |
null | |
null | 李如琦, 唐冶, 肉孜·阿基, 2015.2010年新疆北部暴雪异常的环流 和水汽特征分析[J].高原气象, 34(1): 155-162.DOI: 10. 7522/j.issn.1000-0534.2013.00163.Li R Q , |
null | |
null | 刘惠云, 崔彩霞, 李如琦, 2011.新疆北部一次持续暴雪天气过程分析[J].干旱区研究, 28(2): 282-287. |
null | |
null | 刘晶, 李娜, 陈春艳, 2018.新疆北部一次暖区暴雪过程锋面结构及中尺度云团分析[J].高原气象, 37(1): 158-166.DOI: 10. 7522/j.issn.1000-0534.2017.00008.Liu J , |
null | |
null | 马雷鸣, 鲍旭炜, 2017.数值天气预报模式物理过程参数化方案的研究进展[J].地球科学进展, 32(7): 679-687. |
null | |
null | 马丽云, 饶建, 孙晓娟, 等, 2021.蒙古高压和极涡中期过程对2010年疆北持续性降雪的影响[J].高原气象, 40(2): 302-313.DOI: 10.7522/j.issn.1000-0534.2020.00040.Ma L Y , |
null | |
null | 牟欢, 赵丽, 孙硕阳, 等, 2019.天山北麓两次暴雪天气对比分析[J].干旱区地理, 42(6): 1262-1272. |
null | |
null | 王健, 宫恒瑞, 贾健, 等, 2020.乌鲁木齐“12·27”高影响大暴雪天气综合分析[J].沙漠与绿洲气象, 14(3): 36-42. |
null | |
null | 杨霞, 崔彩霞, 阿不力米提江·阿布力克木, 等, 2013.新疆暖区暴雪天气研究概述[J].沙漠与绿洲气象, 7(4): 21-25. |
null | |
null | 杨霞, 李阿桥, 赵逸舟, 等, 2020.1961-2018年新疆北部冬季暴雪 时空分布及其环流特征[J].冰川冻土, 42(3): 756-765. |
null | |
null | 于晓晶, 于志翔, 唐永兰, 等, 2017.不同云微物理方案对新疆冷锋暴雪的预报影响分析[J].暴雨灾害, 36(1): 33-41. |
null | |
null | 张建彬, 高志球, 杨军, 等, 2022.基于 WRF 模式的博斯腾湖地区暴雨数值模拟研究[J].高原气象, 41(4): 887-895.DOI: 10.7522/j.issn.1000-0534.2021.00029.Zhang J B , |
null | |
null | 张人禾, 张若楠, 左志燕, 2016.中国冬季积雪特征及欧亚大陆积雪对中国气候影响[J].应用气象学报, 27(5): 513-526. |
null | |
null | 张月华, 王健, 郑玉萍, 等, 2019.风廓线雷达资料在乌鲁木齐一次大暴雪过程分析中的应用[J].沙漠与绿洲气象, 13(5): 49-54. |
null | |
null | 张云惠, 于碧馨, 谭艳梅, 等, 2016.乌鲁木齐一次极端暴雪事件中尺度分析[J].气象科技, 44(3): 430-438.Zhang Y H, Yu B X, Tan Y M, et al, 2016.Mesoscale analysis of an extreme blizzard in Urumqi[J].Meteorological Science and Technology44(3): 430-438. |
null | 赵俊荣, 2011.2010 年 1 月新疆北部罕见连续性暖区大暴雪特征及成因分析[J].干旱区资源与环境, 25(5): 117-123. |
null | |
null | 赵俊荣, 杨雪, 杨景辉, 2010.新疆北部冬季暖区大降雪过程中尺 度云团特征分析[J].高原气象, 29(5): 1280-1288.Zhao J R, Yang X, Yang J H, 2010.Analysis on mesoscale cloud characteristic of severe snowfall process in warm zone of northern Xinjiang winter[J].Plateau Meteorology29(5): 1280-1288. |
null | 智协飞, 董甫, 张玲, 等, 2020.基于不同微物理过程的广西沿海南风型暖区暴雨的数值模拟研究[J].大气科学学报, 43(5): 867-879. |
null | |
null | 庄晓翠, 崔彩霞, 李博渊, 等 |
null | 庄晓翠, 李博渊, 陈春艳, 2016b.新疆北部一次暖区与冷锋暴雪并存的天气过程分析[J].气候与环境研究, 21(1): 17-28.DOI: 10.3878/j.issn.1006-9585.2015.15024.Zhuang X C , LiB Y, ChenC Y, 2016b.Analysis of a snowstorm weather process in a coexisting warm area and cold front in Northern Xinjiang[J].Climatic and Environmental Research, 21(1): 17-28.DOI: 10. 3878/j.issn.1006-9585.2015.15024 . |
null | 庄晓翠, 李博渊, 李如琦, 等 |
/
〈 |
|
〉 |