Analysis of Water Vapor Characteristics During Heavy Snow in Different Warm Regions of Northern Xinjiang

  • Xiaocui ZHUANG ,
  • Lijuan CHEN ,
  • Boyuan LI ,
  • Yunlin MIAO
Expand
  • 1. Altai Regional Meteorological Bureau of Xinjiang,Altai 836500,Xinjiang,China
    2. Urumqi Meteorological Bureau of Xinjiang Province,Urumqi 830002,Xinjiang,China

Received date: 2022-01-04

  Revised date: 2023-05-06

  Online published: 2024-01-11

Abstract

This thesis analyzed the data with NCEP/NCAR method, took HYSPLIT (Lagrangian forward trajectory) method to simulate water vapor characteristics of 27 winter snowstorms in northern Xinjiang from 1980 to 2020, and also analyzed the source-sink relationship of water vapor in different regions and its contribution to blizzard.The results show that the main 500 hPa water vapor source is from Greenland, the Atlantic Ocean and its coast, the Mediterranean Sea, as well as the Black Sea and its vicinity.The water vapor source contributing the most to the blizzard in Altay region is from the Atlantic Ocean and its coastal area, the water vapor source contributing the most to the blizzard in Ta'e Basin is from the Mediterranean Sea, the Black Sea and its vicinity, and the losses along the way are great.700 hPa water vapor source is mainly from northern Europe, the Atlantic Ocean and its vicinity, the Mediterranean Sea, as wll as the Black Sea and its vicinity.The water vapor source contributing the most to the blizzard in Altay is from the Mediterranean Sea, the Black Sea and its vicinity, and the greatest losses are in and around the Mediterranean Sea and the Black Sea; the water vapor source contributing the most to the Ta'e basin is from northern Europe, and the greatest losses are in the Atlantic Ocean and its coasts.850 hPa water vapor source is mainly from Central Asia the Mediterranean Sea, the Black Sea and its vicinity, the former contributed the most to blizzard.After reaching the blizzard area, the water vapor increases.The water vapor in each source reaches the key lizzard areas with the westerly air flow, mainly from the west (southwest) and northwest, and the former path is dominant; The source and path of water vapor in Altay area of lower troposphere are more complicated than that in Ta'e Basin.Based on the above analysis, the contribution model of water vapor source and path of snowstorm in warm area was constructed, and the water vapor contribution of each layer in Altay area and Ta'e Basin was described in detail.

Cite this article

Xiaocui ZHUANG , Lijuan CHEN , Boyuan LI , Yunlin MIAO . Analysis of Water Vapor Characteristics During Heavy Snow in Different Warm Regions of Northern Xinjiang[J]. Plateau Meteorology, 2024 , 43(1) : 141 -155 . DOI: 10.7522/j.issn.1000-0534.2023.00041

References

null
Draxler R R Hess G D1998.An overview of the HYSPLIT_4 modeling system for trajectories dispersion and deposition[J].Australian Meteorological Magazine47(4): 295-308.
null
Gustafsson M Rayner D Chen D L2010.Extre me rainfall events in southern Sweden: where does the moisture co me from?[J].Tellus A62(5): 605-616.DOI: 10.1111/j.1600-0870.2010. 00456.x .
null
James P Stohl A Spichtinger N, et al, 2004.Climatological aspects of the extreme European rainfall of August 2002 and a trajectory method for estimating the associated evaporative source regions[J].Natural Hazards and Earth System Sciences4(5/6): 733-746.DOI: 10.5194/nhess-4-733-2004 .
null
Makra L Matyasovszky I Guba Z, et al, 2011.Monitoring the long-range transort effects on urban P M10 levels using 3D clusters of backward trajectories[J].Atmospheric Environment45(16): 2630-2641.
null
Perry L B Konrad C E Schmidlin T W2007.Anteccedent upstream air trajectories associated with northwest flow snowfall in the sonthern Appalachias[J].Weather and Forecasting22(2): 334-352.
null
Stohl A Janes P2004.A Lagrangian analysis of the atmospheric branch of the global water cycle.Part Ⅰ: method description, validation, and demonstration for the August 2002 flooding in central Europe[J].Journal of Hydrometeorology5(4): 656-678.
null
Trenberth K E1998.Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change[J].Climatic Change39(4): 667-694.DOI: 10.1023/A: 1005319109110 .
null
陈斌, 徐祥德, 施晓晖, 2011.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区[J].气象学报69(5): 810-818.DOI: 10.11676/qxxb2011.071.Chen B
null
Xu X D Shi X H2011.Estimating the water vapor transport pathways and associated sources of water vapor for the extreme rainfall event over east of China in July 2007 using the Lagrangian method[J].Acta Meteorologica Sinica69(5): 810-818.DOI: 10.11676/ qxxb2011.071 .
null
戴新刚, 李维京, 马柱国, 2006.近十几年新疆水汽源地变化特征[J].自然科学进展16(12): 1651-1656.
null
Dai X G Li W J Ma Z G2006.Characteristics of water vapor source in Xinjiang in recent decades[J].Progress in Natural Science16(12): 1651-1656.
null
郝璐, 王静爱, 满苏尔, 等, 2002.中国雪灾时空变化及畜牧业脆弱性分析[J].自然灾害学报11(4): 42-48.
null
He L Wang J A Man S E, et al, 2002.Spatio-temporal change of snow disaster and analysis of vulnerability of animal husbandry in China[J].Journal of Natural Disasters11(4): 42-48.
null
江志红, 梁卓然, 刘征宇, 等, 2011.2007年淮河流域强降水过程的水汽输送特征分析[J].大气科学35(2): 361-372.
null
DOI: 10.3878/j.issn.1006-9895.2011.02.14.[ Jiang Z H Liang Z R Liu Z Y, et al, 2011.A diagnostic study of water vapor transport and budget during heavy precipitation over the Huaihe River basin in 2007[J].Chinese Journal of Atmospheric Sciences (in Chinese)35(2): 361-372.DOI: 10.3878/j.issn.1006-9895. 2011.02.14 .
null
江志红, 任伟, 刘征宇, 等, 2013.基于拉格朗日方法的江淮梅雨水汽输送特征分析[J].气象学报71(2): 295-304.DOI: 10.11676/qxxb2013.017.Jiang Z H
null
Ren W Liu Z Y, et al, 2013.Analysis of water vapor transport characteristics during the Meiyu over the Yangtze-Huaihe River valley using the Lagrangian method[J].Acta Meteorologica Sinica71(2): 295-304.DOI: 10.11676/qxxb2013.017 .
null
孔祥伟, 杨建才, 李红, 等, 2021.河西走廊西部干旱区一次极端暴雨天气的水汽特征分析[J].气象47(4): 412-423.DOI: 10. 7519/j.issn.1000-0526.2021.04.003.Kong X W
null
Yang J C Li H, et al, 2021.Analysis on water vapor characteristics of an extreme rainstorm in the arid region of Western Hexi Corridor[J].Meteorological Monthly47(4): 412-423.DOI: 10.7519/j.issn.1000-0526.2021.04.003 .
null
李培基, 1998.青藏高原雪灾时空分布特征/牧区雪灾的分析研究[M].北京: 气象出版社, 15-18.
null
Li P J1998.Spatial and temporal distribution of snow disasters on the Qinghai-Tibet Plateau / Analysis of snow disaster in pastoral area[M].Beijing: China Meteorological Press, 15-18.
null
李如琦, 唐冶, 肉孜·阿基, 2015.2010年新疆北部暴雪异常的环流和水汽特征分析[J].高原气象34(1): 155-162.DOI: 10. 7522/j.issn.1000-0534.2013.00163.Li R Q
null
Tang Y RouZi A J2015.Atmospheric circulation and water vapor characteristics of snowstorm anomalies in northern Xinjiang in 2010[J].Plateau Meteorology34(1): 155-162.DOI: 10.7522/j.issn.1000-0534.2013.00163 .
null
刘蕊, 杨青, 2010.新疆大气水汽通量及其净收支的计算和分析[J].中国沙漠30(5): 1221-1228.
null
Liu R Yang Q2010.Calculation and analysis of water vapor transportation and its net income in Xinjiang[J].Journal of Desert Research30(5): 1221-1228.
null
刘煜, 刘蓉, 王欣, 等, 2022.基于拉格朗日方法评估青藏高原若尔盖地区水汽输送特征[J].高原气象41(1): 58-67.DOI: 10.7522/j.issn.1000-0534.2021.00100.Liu Y
null
Liu R Wang X, et al, 2022.The characteristics of water vapor transport based on Lagrangian Method in the Zoige, Qinghai-Xizang Plateau[J].Plateau Meteorology41(1): 58-67.DOI: 10.7522/ j.issn. 1000-0534.2021.00100 .
null
美丽巴奴·艾则孜, 张俊兰, 王小亚, 2021.北疆北部一次暖区暴雪天气过程的综合分析[J].沙漠与绿洲气象15(4): 107-114.DOI: 10.12057/j.issn.1002-0799.2021.04.014.Meilibanu Aizezi
null
Zhang J L Wang X Y2021.Comprehensive analysis upon a warm area snowstorm in northern Xinjiang[J].Desert and Oasis Meteorology15(4): 107-114.DOI: 10.12057/j.issn. 1002-0799.2021.04.014 .
null
孙建华, 汪汇洁, 卫捷, 等, 2016.江淮区域持续性暴雨过程的水汽源地和输送特征[J].气象学报74(4): 542-555.DOI: 10. 11676/qxxb2016.047.Sun J H
null
Wang H J Wei J, et al, 2016.The sources and transportation of water vapor in persistent heavy rainfall events in the Yangtze-Huaihe River Valley[J].Acta Meteorologica Sinica74(4): 542-555.DOI: 10.11676/ qxxb2016. 047 .
null
孙力, 马梁臣, 沈柏竹, 等, 2016.2010年7~8 月东北地区暴雨过程的水汽输送特征分析[J].大气科学40(3): 630-646.DOI: 10.3878/j.issn.1006-9895.1506.15101.Sun L
null
Ma L C Shen B Z, et al, 2016.A diagnostic study of water vapor transport and budget of heavy rainfall over Northeast China during July to August 2010[J].Chinese Journal of Atmospheric Sciences40(3): 630-646.DOI: 10.3878/j.issn.1006-9895.1506.15101 .
null
王美月, 王磊, 李谢辉, 等, 2022.三江源地区暴雨的水汽输送源地及路径研究[J].高原气象41(1): 68-78.DOI: 10.7522/j.issn.1000-0534.2020.00097.Wang M Y
null
Wang L Li X H, et al, 2022.Study on water vapor transport source and path of rainstorm in Sanjiangyuan Area[J].Plateau Meteorology41(1): 68-78.DOI: 10.7522/j.issn.1000-0534.2020.00097 .
null
王卫国, 李弘毅, 朱小凡, 等, 2022.1979-2018年青藏高原不同地区积雪季极端降水水汽来源分析[J].高原气象41(6): 1367-1383.DOI: 10.7522/j.issn.1000-0534.2021.00080.Wang W G
null
Li H Y Zhu X F, et al, 2022.The analysis of water vapor sources of extreme precipitation in different subregions of Qinghai-Xizang Plateau during the snow season from 1979 to 2018[J].Plateau Meteorology41(6): 1367-1383.DOI: 10. 7522/j.issn.1000-0534.2021.00080 .]
null
杨莲梅, 刘雯, 2016.新疆北部持续性暴雪过程成因分析[J].高原气象35(2): 507-519.DOI: 10.7522/j.issn.1000-0534. 2014.00161.Yang L M
null
Liu W2016.Cause analysis of persistent heavy snow processes in the Northern Xinjiang[J].Plateau Meteorology35(2): 507-519.DOI: 10.7522/j.issn.1000-0534. 2014.00161 .
null
杨莲梅, 刘晶, 2018.新疆水汽研究若干进展[J].自然灾害学报27(2): 1-13.DOI: 10.13577/j.jnd.2018.0201.Yang L M
null
Liu J2018.Some advances of water vapor research in Xinjiang[J].Journal of Natural Disasters27(2): 1-13.DOI: 10.13577/j.jnd.2018.0201 .
null
杨莲梅, 史玉光, 汤浩, 2010.新疆北部冬季降水异常成因[J].应用气象学报21(4): 491-499.
null
Yang L M Shi Y G Tang H2010.Causes of winter precipitation anomalies in northern Xinjiang[J].Journal of Applied Meteorological Science21(4): 491-499.
null
周玉淑, 颜玲, 吴天贻, 等, 2019.高原涡和西南涡影响的两次四川暴雨过程的对比分析[J].大气科学43(4): 813-830.DOI: 10.3878/j.issn.1006-9895.1807.18147.Zhou Y S
null
Yan L Wu T Y, et al, 2019.Comparative analysis of two rainstorm processes in Sichuan Province affected by Tibetan Plateau vortex and Southwest vortex[J].Chinese Journal of Atmospheric Sciences (in Chinese)43(4): 813-830.DOI: 10.3878/j.issn.1006-9895.1807.18147 .
null
庄晓翠, 李博渊, 张林梅, 等, 2013.新疆阿勒泰地区冬季大到暴雪气候变化特征[J].干旱区地理36(6): 1013-1022.
null
Zhuang X C Li Y B Zhang L M, et al, 2013.Heavy snowstorm characteristics of climatic change in winter in Altay Xinjiang[J].Arid Land Geography36(6): 1013-1022.
null
庄晓翠, 崔彩霞, 李博渊, 等, 2018.新疆北部雪灾成因及预报技术研究[M].北京: 气象出版社, 108-165.
null
Zhuang X C Cui C X Li B Y, et al, 2018. Study on the cause and forecast technology of snow disaster in northern Xinjiang[M].Beijing: China Meteorological Press, 108-165.
null
庄晓翠, 覃家秀, 李博渊, 2016a.2014年新疆西部一次暴雪天气的中尺度特征[J].干旱气象34(2): 326-334.DOI: 10. 11755/j , issn.1006-7639(2016)-02-0326.ZhuangX C, QinJ X, LiB Y, 2016a.Mesoscale characteristics of a snowstorm in western Xinjiang in 2014[J].Journal of Arid Meteorology, 34(2): 326-334.DOI: 10.11755/j , issn.1006-7639(2016)-02-0326.
null
庄晓翠, 李健丽, 李博渊, 等, 2019.天山北坡2次暴雪过程机理分析[J].沙漠与绿洲气象13(1): 29-38.DOI: 10.12057/j.issn.1002-0799.2019.01.005.Zhuang X C
null
Li J L Li Y B, et al, 2019.Mechanism analysis of two class blizzard process in the north slope of Tianshan Mountains[J].Desert and Oasis Meteorology13(1): 29-38.DOI: 10.12057/j.issn.1002-0799.2019. 01.005 .
null
庄晓翠, 李博渊, 李如琦, 等 , 2016b.新疆北部强降雪天气研究若干进展[J].沙漠与绿洲气象10(1): 1-8.DOI: 10.3969/j.issn.1002-0799.2016.01.001.Zhuang X C , LiY B, LiR Q, et al, 2016b.Some advances on study of strong snowfall in northern Xinjiang[J].Desert and Oasis Meteorology, 10(1): 1-8.DOI: 10.3969/j.issn.1002-0799.2016.01.001 .
null
庄晓翠, 崔彩霞, 李博渊, 等 , 2016c.新疆北部暖区强降雪中尺度环境与落区分析[J].高原气象35(1): 129-142.DOI: 10. 7522/j.issn.1000-0534.2014.00132.Zhuang X C , CuiC X, LiB Y, et al, 2016c.Analysis of warm zone mesoscale environmental and heavy snowfall drop zone in northern Xinjiang[J].Plateau Meteorology, 35(1): 129-142.DOI: 10.7522/ j.issn.1000-0534.2014.00132 .
null
庄晓翠, 李博渊, 陈春艳, 2016d.新疆北部一次暖区与冷锋暴雪并存的天气过程分析[J].气候与环境研究21(1): 17-28.DOI: 10.3878/j.issn.1006-9585.2015.15024.Zhuang X C , LiB Y, ChenC Y, 2016d.Analysis of a snowstorm weather process in a coexisting warm area and cold front in Northern Xinjiang[J].Climatic and Environmental Research, 21(1): 17-28.DOI: 10. 3878/j.issn.1006-9585.2015.15024 .
null
庄晓翠, 李博渊, 赵江伟, 等 , 2022a.基于HYSPLIT模式分析的塔克拉玛干沙漠南缘暴雨水汽特征[J].气象48(3): 311-323.DOI: 10.7519/j.issn.1000-0526.2022.011801.Zhuang X C , LiB Y, ZhaoJ W, et al, 2022a.Water vapor characteristics of rainstorm in southern Taklimakan Desert based on HYSPLIT model analysis[J].Meteorological Monthly, 48(3): 311-323.DOI: 10.7519/j.issn.1000-0526.2022.011801 .
null
庄晓翠, 李博渊, 赵江伟, 等 , 2022b.天山南坡暖季暴雨过程的水汽来源及输送特征[].干旱气象40(1): 30-40.DOI: 10. 11755/j , issn.1006-7639(2022)-01-0030.ZhuangX C, LiB Y, ZhaoJ W, et al, 2022b.Water vapor source and transport characteristics of rainstorm processes in warm season on southern slope of the Tianshan Mountains[J].Journal of Arid Meteorology, 40(1): 30-40.DOI: 10.11755/j , issn.1006-7639(2022)-01-0030.
null
庄晓翠, 赵江伟, 李博渊, 等 , 2022c.南疆西部暴雨过程水汽来源及输送特征[J].暴雨灾害41(5): 544-555.DOI: 10.12406/byzh.2021-142.Zhuang X C , ZhaoJ W, LiB Y, et al, 2022c.Characteristics of water vapor source and transport during rainstorm in western southern Xinjiang[J].Torrential Rain and Disasters, 41(5): 544-555.DOI: 10.12406/byzh. 2021-142 .
null
张家宝, 邓子风, 1987.新疆降水概论[M].北京: 气象出版社, 331-332.
null
Deng J B Deng Z F1987.Introduction to precipitation in Xinjiang[M].Beijing: China Meteorological Press, 331-332.
null
张俊兰, 崔彩霞, 陈春艳, 2013.北疆典型暴雪天气的水汽特征研究[J].高原气象32(4): 1115-1125.DOI: 10.7522/j.issn. 1000-0534.2012.00105.Zhang J L
null
Cui C X Chen C Y2013.Study on water vapor characteristic of typical heavy snowstorm case in northern Xinjiang[J].Plateau Meteorology32(4): 1115-1125.DOI: 10.7522/j.issn.1000-0534.2012.00105 .
null
张林梅, 李博渊, 庄晓翠, 等, 2021.新疆北部2次罕见暖区暴雪过程对比分析[J].沙漠与绿洲气象15(2): 1-9.DOI: 10. 12057/j.issn.1002-0799.2021.02.001.Zhang L M
null
Li B Y Zhuang X C, et al, 2021.Comparative analysis of two rare warm zone snowstorms in northern Xinjiang[J].Desert and Oasis Meteorology15(2): 1-9.DOI: 10.12057/j.issn.1002-0799.2021.02. 001 .
Outlines

/